[en] Giant exoplanets on wide orbits have been directly imaged around young stars. If the thermal background in the mid-infrared can be mitigated, then exoplanets with lower masses can also be imaged. Here we present a ground-based mid-infrared observing approach that enables imaging low-mass temperate exoplanets around nearby stars, and in particular within the closest stellar system, α Centauri. Based on 75-80% of the best quality images from 100 h of cumulative observations, we demonstrate sensitivity to warm sub-Neptune-sized planets throughout much of the habitable zone of α Centauri A. This is an order of magnitude more sensitive than state-of-the-art exoplanet imaging mass detection limits. We also discuss a possible exoplanet or exozodiacal disk detection around α Centauri A. However, an instrumental artifact of unknown origin cannot be ruled out. These results demonstrate the feasibility of imaging rocky habitable-zone exoplanets with current and upcoming telescopes.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Wagner, K.; Dept. of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ, USA ; NASA Nexus for Exoplanet System Science, Earths in Other Solar Systems Team, Tucson, AZ, USA
Boehle, A.; Institute for Particle Physics and Astrophysics, ETH Zurich, Zürich, Switzerland
Pathak, P.; European Southern Observatory, Garching bei München, Germany
Kasper, M.; European Southern Observatory, Garching bei München, Germany
Arsenault, R.; European Southern Observatory, Garching bei München, Germany
Jakob, G.; European Southern Observatory, Garching bei München, Germany
Käufl, U.; European Southern Observatory, Garching bei München, Germany
Leveratto, S.; European Southern Observatory, Garching bei München, Germany
Maire, Anne-Lise ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > PSILab
Pantin, E.; AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, Gif-sur-Yvette, France
Siebenmorgen, R.; European Southern Observatory, Garching bei München, Germany
Zins, G.; European Southern Observatory, Garching bei München, Germany
Absil, Olivier ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > PSILab
Apai, D.; Dept. of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ, USA ; NASA Nexus for Exoplanet System Science, Earths in Other Solar Systems Team, Tucson, AZ, USA ; Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
Carlotti, A.; Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, France
Choquet, É.; Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France
Delacroix, Christian ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > PSILab
Dohlen, K.; Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France
Duhoux, P.; European Southern Observatory, Garching bei München, Germany
Forsberg, P.; Department of Materials Science and Engineering, Ångström Laboratory, Uppsala University, Uppsala, Sweden
Fuenteseca, E.; European Southern Observatory, Garching bei München, Germany
Guyon, O.; Dept. of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ, USA ; Subaru Telescope, National Astronomical Observatory of Japan, National Institutes of Natural Sciences (NINS), Hilo, HI, USA ; The Breakthrough Initiatives, NASA Research Park, Moffett Field, CA, USA ; James C. Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, USA
Huby, E.; LESIA, Observatoire de Paris, Meudon, France
Ruane, G.; California Institute of Technology, Pasadena, CA, USA ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Riquelme, M.; European Southern Observatory, Garching bei München, Germany
Soenke, C.; European Southern Observatory, Garching bei München, Germany
Sterzik, M.; European Southern Observatory, Garching bei München, Germany
Vigan, A.; Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France
de Zeeuw, T.; European Southern Observatory, Garching bei München, Germany ; Sterrewacht Leiden, Leiden University, Leiden, The Netherlands ; Max Planck Institute for Extraterrestrial Physics, Garching, Germany)
Schwieterman, E. et al. Detecting biosignatures on weakly oxygenated terrestrial exoplanets: the importance of UV imaging capabilities of next generation telescopes. Astrobiology 18, 663 (2018). DOI: 10.1089/ast.2017.1729
Kiang, N. Y. et al. Exoplanet biosignatures: at the dawn of a new era of planetary observations. Astrobiology 18, 619 (2018). DOI: 10.1089/ast.2018.1862
Gajjar, V. et al. The breakthrough listen search for extraterrestrial intelligence. BAAS 51, 223 (2019).
Marois, C. et al. Direct imaging of multiple planets orbiting the star HR 8799. Science 322, 1348 (2008). DOI: 10.1126/science.1166585
Lagrange, A.-M. et al. A giant planet imaged in the disk of the young star β Pictoris. Science 329, 57 (2010). DOI: 10.1126/science.1187187
Bowler, B. P. Imaging extrasolar giant planets 2016. Publ. Astronomical Soc. Pacific 128, 102001 (2016). DOI: 10.1088/1538-3873/128/968/102001
Quanz, S. P. et al. Direct detection of exoplanets in the 3-10 μm range with E-ELT/METIS. Int. J. Astrobiol. 14, 279 (2015). DOI: 10.1017/S1473550414000135
The LUVOIR Team. The LUVOIR Mission Concept Study Final Report. Preprint at https://arxiv.org/abs/1912.06219 (2019).
Gaudi, B. S. et al. The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report. Preprint at https://arxiv.org/abs/2001.06683 (2020).
Belikov, R., Barclay, T. & Batalha, N. M. Direct imaging of exoplanets in nearby multi-star systems. BAAS 51, 186 (2019).
Gratton, R. et al. Searching for the near-infrared counterpart of Proxima c using multi-epoch high-contrast SPHERE data at VLT. Astronomy Astrophysics 638, A120 (2020). DOI: 10.1051/0004-6361/202037594
Hunziker, S. et al. RefPlanets: Search for reflected light from extrasolar planets with SPHERE/ZIMPOL. Astronom. Astrophysics 634, A69 (2020). DOI: 10.1051/0004-6361/201936641
Kaltenegger, L. & Haghighipour, N. Calculating the habitable zone of binary star systems. I. S-type binaries. Astrophysical J. 777, 165 (2013). DOI: 10.1088/0004-637X/777/2/165
Zhao, L. et al. Planet detectability in the Alpha Centauri System. Astronom. J. 155, 24 (2018). DOI: 10.3847/1538-3881/aa9bea
Quarles, B. & Lissauer, J. J. Long-term stability of tightly packed multi-planet systems in prograde, coplanar, circumstellar orbits within the α Centauri AB system. Astronomical J. 155, 130 (2018). DOI: 10.3847/1538-3881/aaa966
Anglada-Escudé, G. et al. A terrestrial planet candidate in a temperate orbite around Proxima Centauri. Nature 536, 437 (2016). DOI: 10.1038/nature19106
Damasso, M. et al. A low-mass planet candidate orbiting Proxima Centauri at a distance of 1.5 AU. Sci. Adv. 6, 7467 (2020). DOI: 10.1126/sciadv.aax7467
Stone, J. M. et al. The LEECH Exoplanet Imaging Survey: limits on planet occurrence rates under conservative assumptions. Astronomical J. 156, 286 (2018). DOI: 10.3847/1538-3881/aaec00
Nielsen, E. L. et al. The Gemini Planet Imager Exoplanet Survey: giant planet and brown dwarf demographics from 10 to 100 au. Astronomical J. 158, 13 (2019). DOI: 10.3847/1538-3881/ab16e9
A. Vigan, et al. The SPHERE infrared survey for exoplanets (SHINE). III. The demographics of young giant exoplanets below 300 au with SPHERE. Preprint at https://arxiv.org/abs/2007.06573 (2020).
Wagner, K., Apai, D. & Kratter, K. M. On the mass function, multiplicity, and origins of wide-orbit giant planets. Astrophysical J. 877, 46 (2019). DOI: 10.3847/1538-4357/ab1904
Kasper, M. et al. NEAR: low-mass planets in α Cen with VISIR. Messenger 169, 16 (2017).
Kasper, M. et al. NEAR: First results from the search for low-mass planets in α Cen. Messenger 178, 5 (2019).
Lagage, P. O. et al. Successful commissioning of VISIR: the mid-infrared VLT instrument. Messenger 117, 12 (2004).
Mawet, D. et al. Annular groove phase mask coronagraph. Astrophysical J. 633, 1191 (2005). DOI: 10.1086/462409
Delacroix, C. et al. Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph. Astronomy and Astrophysics 553, A98 (2013). DOI: 10.1051/0004-6361/201321126
Maire, A.-L. et al. Design, pointing control, and on-sky performance of the mid-infrared vortex coronagraph for the VLT/NEAR experiment. J. Astronomical Telescopes Instrum. Syst. 6, 5003 (2020).
Carlotti, A. et al. Fully optimized shaped pupils: preparation for a test at the Subaru Telescope. Proc. SPIE 8446, 844254 (2012). DOI: 10.1117/12.927178
Ruane, G. J. et al. Lyot-plane phase masks for improved high-contrast imaging with a vortex coronagraph. Astronomy Astrophysics 583, A81 (2015). DOI: 10.1051/0004-6361/201526561
Arsenault, R. et al. The adaptive optics facility: commissioning progress and results. Messenger 168, 8 (2017).
Absil, O. et al. Three years of harvest with the vector vortex coronagraph in the thermal infrared. Proc. SPIE 9908, 99080Q (2016). DOI: 10.1117/12.2233289
Males, J. R., Skemer, A. J. & Close, L. M. Direct imaging in the habitable zone and the problem of orbital motion. Astrophysical J. 771, 10 (2013). DOI: 10.1088/0004-637X/771/1/10
Le Coroller, H. et al. K-Stacker: an algorithm to hack the orbital parameters of planets hidden in high-contrast imaging. First applications to VLT/SPHERE multi-epoch observations. Astronomy Astrophysics 639, A113 (2020). DOI: 10.1051/0004-6361/202037605
Lopez, E. D. & Fortney, J. J. Understanding the mass-radius relation for Sub-neptunes: radius as a proxy for composition. Astrophysical J. 792, 1 (2014). DOI: 10.1088/0004-637X/792/1/1
Rogers, L. A. Most 1.6 earth-radius planets are not rocky. Astrophysical J. 801, 41 (2015). DOI: 10.1088/0004-637X/801/1/41
M. Kasper, NEAR - technical analysis and lessons from a unique experiment. Ground-based thermal infrared astronomy – past, present, and future. Garching, Germany, 10.5281/zonodo.4249911 (2020).
Carlomagno, B. et al. METIS high-contrast imaging: design and expected performance. J. Astronomical Telescopes Instrum. Syst. 6, 5005 (2020).
Sidick, E. Power spectral density specification and analysis of large optical surfaces. Proc. SPIE 7390, 0 (2009).
Brandl, B. R. et al. Status of the mid-IR ELT imager and spectrograph (METIS). Proc. SPIE 10702, 107021U (2018).
Mawet, D. et al. Ring-apodized vortex coronagraphs for obscured telescopes. I. Transmissive ring apodizers. Astrophysical J. Suppl. 209, 7 (2013). DOI: 10.1088/0067-0049/209/1/7
Codona, J. & Kenworthy, M. Focal plane wavefront sensing using residual adaptive optics speckles. Astrophysical J. 767, 100 (2013). DOI: 10.1088/0004-637X/767/2/100
Beichman, C., Ygouf, M. & Llop, J. Sayson, et al., Searching for planets orbiting α Cen A with the James Webb Space Telescope. Publ. Astromical Soc. Pacific 132, 015002 (2020). DOI: 10.1088/1538-3873/ab5066
Kervella, P. et al. Close stellar conjunctions of α Centauri A and B until 2050. An mK = 7.8 star may enter the Einstein ring of α Cen A in 2028. Astronomy Astrophysics 594, A107 (2016). DOI: 10.1051/0004-6361/201629201
Bashi, D. et al. Two empirical regimes of the planetary mass-radius relation. Astronomy Astrophysics 604, A83 (2017). DOI: 10.1051/0004-6361/201629922
Pearl, J. C. & Conrath, B. J. The albedo, effective temperature, and energy balance of Neptune, as determined from Voyager data. J. Geophys. Res. 96, 18921 (1991). DOI: 10.1029/91JA01087
Reinhardt, C. et al. Bifurcation in the history of Uranus and Neptune: the role of giant impacts. Mon. Notices R. Astronomical Soc. 492, 5336 (2020). DOI: 10.1093/mnras/stz3271
Ertel, S. et al. The HOSTS Survey for exozodiacal dust: observational results from the complete survey. Astronomical J. 159, 177 (2020). DOI: 10.3847/1538-3881/ab7817
Wiegert, J. et al. How dusty is α Centauri? Excess or. non-excess infrared photospheres main.-sequence stars. Astronomy Astrophysics 563, A102 (2014). DOI: 10.1051/0004-6361/201321887
Arrington, D. C. et al. Impact of excess low-frequency noise (ELFN) in Si:As impurity band conduction (IBC) focal plane arrays for astronomical applications. Proc. SPIE 3379, 361 (1998). DOI: 10.1117/12.317603
Ives, D. et al. AQUARIUS: the next generation mid-IR detector for ground-based astronomy, an update. Proc. SPIE 9154, 91541J (2014).
Morzinski, K. M. et al. Magellan adaptive optics first-light observations of the exoplanet β Pic b. II. 3-5 μm Direct Imaging with MagAO+Clio, and the empirical bolometric luminosity of a self-luminous giant planet. Astrophysical J. 815, 108 (2015). DOI: 10.1088/0004-637X/815/2/108
Marois, C. et al. Angular differential imaging: a powerful high-contrast imaging technique. Astrophysical J. 641, 556 (2006). DOI: 10.1086/500401
Soummer, R., Pueyo, L. & Larkin, J. Detection and characterization of exoplanets and disks using projections on Karhunen-Loève Eigenimages. Astrophysical J. 755, L28 (2012). DOI: 10.1088/2041-8205/755/2/L28
Apai, D. et al. High-cadence, high-contrast imaging for exoplanet mapping: observations of the HR 8799 planets with VLT/SPHERE satellite-spot-corrected relative photometry. ApJ 820, 40 (2016). DOI: 10.3847/0004-637X/820/1/40
Bottom, M., Ruane, G. & Mawet, D. Noise-weighted angular differential imaging. Res. Notes Am. Astronomical Soc. 1, 30 (2017).
Amara, A. & Quanz, S. P. PYNPOINT: an image processing package for finding exoplanets. Mon. Notices R. Astronomical Soc. 427, 948 (2012). DOI: 10.1111/j.1365-2966.2012.21918.x