Copyright 2020 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11448/2561404/The-adaptive-optics-simulation-analysis-toolkit-AOSAT/10.1117/12.2561404.full
All documents in ORBi are protected by a user license.
[en] AOSAT is a python package for the analysis of single-conjugate adaptive optics (SCAO) simulation results. Python is widely used in the astronomical community these days, and AOSAT may be used stand-alone, integrated into a simulation environment, or can easily be extended according to a user's needs. Standalone operation requires the user to provide the residual wavefront frames provided by the SCAO simulation package used, the aperture mask (pupil) used for the simulation, and a custom setup file describing the simulation/analysis configuration. In its standard form, AOSAT's "tearsheet" functionality will then run all standard analyzers, providing an informative plot collection on properties such as the point-spread function (PSF) and its quality, residual tip-tilt, the impact of pupil fragmentation, residual optical aberration modes both static and dynamic, the expected high-contrast performance of suitable instrumentation with and without coronagraphs, and the power spectral density of residual wavefront errors. AOSAT fills the gap between the simple numerical outputs provided by most simulation packages, and the full-scale deployment of instrument simulators and data reduction suites operating on SCAO residual wavefronts. It enables instrument designers and end-users to quickly judge the impact of design or configuration decisions on the final performance of down-stream instrumentation.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Feldt, M.; Max-Planck-Institut für Astronomie (Germany)
Hippler, S.; Max-Planck-Institut für Astronomie (Germany)
Cantalloube, F.; Max-Planck-Institut für Astronomie (Germany)
Bertram, T.; Max-Planck-Institut für Astronomie (Germany)
Obereder, A.; Johann Radon Institute (Austria)
Steuer, H.; Max-Planck-Institut für Astronomie (Germany)
Absil, Olivier ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > PSILab
Le Louarn, M.; European Southern Observatory (Germany))
Language :
English
Title :
The adaptive optics simulation analysis tool(kit) (AOSAT)
Bertram, T., Absil, O., Bizenberger, P., Brandner, W., Briegel, F., Cantalloube, F., Carlomagno, B., Vázquez, M. C. C., Feldt, M., Glauser, A. M., Henning, T., Hippler, S., Huber, A., Hurtado, N., Kenworthy, M. A., Kulas, M., Mohr, L., Naranjo, V., Neureuther, P., Obereder, A., Rohloff, R.-R., Scheithauer, S., Shatokhina, I., Stuik, R., and van Boekel, R., "Single conjugate adaptive optics for METIS," in [adaptive Optics Systems VI], Close, L. M., Schreiber, L., and Schmidt, D., eds., 10703, 357-367, International Society for Optics and Photonics, SPIE (2018).
Clénet, Y., Bernardi, P., Chapron, F., Gendron, E., Rousset, G., Hubert, Z., Davies, R., Thiel, M., Tromp, N., and Genzel, R., "SAMI: the SCAO module for the E-ELT adaptive optics imaging camera MICADO," in [adaptive Optics Systems II], Ellerbroek, B. L., Hart, M., Hubin, N., and Wizinowich, P. L., eds., 7736, 1326-1338, International Society for Optics and Photonics, SPIE (2010).
Neichel, B., Fusco, T., Sauvage, J.-F., Correia, C., Dohlen, K., El-Hadi, K., Blanco, L., Schwartz, N., Clarke, F., Thatte, N. A., Tecza, M., Paufique, J., Vernet, J., Louarn, M. L., Hammersley, P., Gach, J.-L., Pascal, S., Vola, P., Petit, C., Conan, J.-M., Carlotti, A., Vérinaud, C., Schnetler, H., Bryson, I., Morris, T., Myers, R., Hugot, E., Gallie, A. M., and Henry, D. M., "The adaptive optics modes for HARMONI: from Classical to Laser Assisted Tomographic AO," in [adaptive Optics Systems V], Marchetti, E., Close, L. M., and Véran, J.-P., eds., 9909, 92-106, International Society for Optics and Photonics, SPIE (2016).
Herriot, G., Hickson, P., Ellerbroek, B., Andersen, D., Davidge, T., Erickson, D., Powell, I., Clare, R., Gilles, L., Boyer, C., Smith, M., Saddlemyer, L., and Véran, J., "Nfiraos: Tmt narrow field, near-infrared facility adaptive optics-Art. no. 62720q," Proceedings of SPIE-The International Society for Optical Engineering 6272 (07 2006).
Lloyd-Hart, M., Angel, R., Milton, N. M., Rademacher, M., and Codona, J., "Design of the adaptive optics systems for GMT," in [advances in Adaptive Optics II], Ellerbroek, B. L. and Calia, D. B., eds., 6272, 115-126, International Society for Optics and Photonics, SPIE (2006).
Hippler, S., "Adaptive Optics for Extremely Large Telescopes," Journal of Astronomical Instrumentation 8, 1950001-322 (Jan. 2019).
Rigaut, F., "yao, a monte-carlo simulation tool for adaptive optics (ao) systems," (2012).
Ferreira, F., Gratadour, D., Sevin, A., and Doucet, N., "Compass: An efficient gpu-based simulation software for adaptive optics systems," in [2018 International Conference on High Performance Computing Simulation (HPCS)], 180-187 (2018).
Conan, R. and Correia, C., "Object-oriented Matlab adaptive optics toolbox," in [adaptive Optics Systems IV], Marchetti, E., Close, L. M., and Véran, J.-P., eds., 9148, 2066-2082, International Society for Optics and Photonics, SPIE (2014).
Carbillet, M., Camera, A. L., Folcher, J.-P., Perruchon-Monge, U., and Sy, A., "The software package CAOS 7.0: enhanced numerical modelling of astronomical adaptive optics systems," in [adaptive Optics Systems V], Marchetti, E., Close, L. M., and Véran, J.-P., eds., 9909, 2194-2200, International Society for Optics and Photonics, SPIE (2016).
Feldt, M. and Hippler, S., "AOSAT Documentation." Readthedocs, https://aosat.readthedocs.io (2020). (Accessed: 11 November 2020).
"Fits standard document." https://fits.gsfc.nasa.gov/fits-standard.html (1993). Accessed: 2020-08-12.
Sauvage, J.-F., Fusco, T., Lamb, M., Girard, J., Brinkmann, M., Guesalaga, A., Wizinowich, P., O'Neal, J., N'Diaye, M., Vigan, A., Mouillet, D., Beuzit, J.-L., Kasper, M., Louarn, M. L., Milli, J., Dohlen, K., Neichel, B., Bourget, P., Haguenauer, P., and Mawet, D., "Tackling down the low wind effect on SPHERE instrument," in [adaptive Optics Systems V], Marchetti, E., Close, L. M., and Véran, J.-P., eds., 9909, 408-416, International Society for Optics and Photonics, SPIE (2016).
Perrin, M., Long, J., Douglas, E., Sivaramakrishnan, A., Slocum, C., and others, "POPPY: Physical Optics Propagation in PYthon," (Feb. 2016).
Cantalloube, F., Farley, O. J. D., Milli, J., Bharmal, N., Brandner, W., Correia, C., Dohlen, K., Henning, T., Osborn, J., Por, E., Suárez Valles, M., and Vigan, A., "Wind-driven halo in high-contrast images. I. Analysis of the focal-plane images of SPHERE," A&A 638, A98 (June 2020).
Gonzalez, C. A. G., Wertz, O., Absil, O., Christiaens, V., Defrère, D., Mawet, D., Milli, J., Absil, P.-A., Droogenbroeck, M. V., Cantalloube, F., Hinz, P. M., Skemer, A. J., Karlsson, M., and Surdej, J., "VIP: Vortex image processing package for high-contrast direct imaging," The Astronomical Journal 154, 7 (jun 2017).
Marois, C., Lafrenière, D., Doyon, R., Macintosh, B., and Nadeau, D., "Angular Differential Imaging: A Powerful High-Contrast Imaging Technique," ApJ 641, 556-564 (Apr. 2006).
Cavarroc, C., Boccaletti, A., Baudoz, P., Fusco, T., and Rouan, D., "Fundamental limitations on Earth-like planet detection with extremely large telescopes," Astronomy and Astrophysics 447, 397-403 (Feb. 2006).