Phenol biodegradation; Escherichia coli; statistical modeling; Baranyi and Roberts model; central composite rotatable design
Abstract :
[en] Aromatic compounds, including phenols, are a significant source of pollution which need to be treated by environmentally-friendly methods, such as bioprocesses. This work focuses on the biodegradation of phenol in a batch reactor with bacteria, and the optimization of the growth parameters in order to obtain the highest phenol degradation. The model and algorithms fitting the growth data are emphasized. Primary models, applied to monitor the dynamic evolution of the microbial biomass of the selected strain, were fitted to the data by nonlinear regression based on the Levenberg Marquart algorithm. The statistically-validated Baranyi and Roberts equation was used to evaluate the growth parameters: maximum growth rate (μmax), latency time (λ), and maximum optical density (ODmax). To improve bacterial growth and phenol degradation performance, physico-chemical conditions, such as initial phenol concentration, pH, and nitrogen source (ammonium sulfate), were optimized using secondary models based on a central composite rotatable design (CCRD). The correlation coefficient, R², for each regression equation is > 94%. The optimal values of growth parameters are λmin = 21.08 h, µmax = 8.68 h–1, and ODmax = 0.39 at pH = 6.3 for an initial concentration of phenol = 200 mg/L and initial concentration of ammonium sulfate = 1.33 g/L. Escherichia coli showed an ability to degrade up to 963 mg/L of phenol in 250 h without prior acclimatization of the strain.
Disciplines :
Environmental sciences & ecology Chemical engineering Biotechnology
Author, co-author :
Benkhennouche-Bouchene, Hayette
Mahy, Julien ; Université de Liège - ULiège > Department of Chemical Engineering > Nanomaterials, Catalysis, Electrochemistry
Lambert, Stéphanie ; Université de Liège - ULiège > Department of Chemical Engineering > Nanomaterials, Catalysis, Electrochemistry
Hayoun, Bahdja
Deflaoui, Ourida
Bourouina, Mustapha
Bachari, Khaldoune
Hamitouche, Adhya-Eddine
Bacha-Bourouina, Saliha
Language :
English
Title :
Statistical modeling and optimization of Escherichia coli growth parameters for the biological treatment of phenol
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Al-Khalid, T., El-Naas, M.H., Aerobic biodegradation of Phenols: a comprehensive review. Crit. Rev. Environ. Sci. Technol. 42 (2012), 1631–1690, 10.1080/10643389.2011.569872.
Asakawa, D., Bernevic, B., Cai, Z., Debois, D., Demeure, K., De Pauw, E., Erba, E.B., Gao, X., Guo, Y., He, Z., Liu, N., Liu, S., Lu, M., Ma, L., Mädler, S., Przybylski, M., Qi, R.Z., Quinton, L., Schellander, K., Smargiasso, N., Sugrue, R.J., Susnea, I., Tang, K., Tan, B.H., Wang, H., Wicke, M., Yang, H., Yu, W., Zenobi, R., Zhao, Z., Zimmerman, T.A., Applications of MALDI-TOF Spectroscopy, Topics in, 2013, Springer, London.
Basha, K.M., Rajendran, A., Thangavelu, V., Recent advances in the biodegradation of phenol: a review. Asian J. Exp. Biol. Sci. 1 (2010), 219–234.
Buchanan, R.L., Klawitter, L.A., The effect of incubation temperature, initial pH, and sodium chloride on the growth kinetics of Escherichia coli 0157:H7. Food Microbiol. 9 (1992), 185–196.
Câmara, N., Casimiro, A., Macedo, D., Daniel, Á., Pinheiro, T., Journal of Environmental Chemical Engineering Phenol biodegradation by Candida tropicalis ATCC 750 immobilized on cashew apple bagasse. J. Environ. Chem. Eng., 7, 2019, 103076, 10.1016/j.jece.2019.103076.
Chai, W.S., Tan, W.G., Unawaroh, H.S.H., Gupta, V.K., Ho, S., Show, P.L., Multifaceted roles of microalgae in the application of wastewater biotreatment: a review *. Environ. Pollut., 269, 2021, 116236, 10.1016/j.envpol.2020.116236.
Fayidh, M.A., Sabina, K., Sudharsan, K., Sukumar, M., Isolation of a unique Phenol degrading bacterial strain Escherichia coli moh 1 from effluent of an edible oil industry in Chennai, India. Res. J. Biotechnol. 10 (2015), 36–42.
Fujikawa, H., Kai, A., Morozumi, S., A new logistic model for Escherichia coli growth at constant and dynamic temperatures. Food Microbiol. 21 (2004), 501–509, 10.1016/j.fm.2004.01.007.
Hamitouche, A., Amrane, A., Bendjama, Z., Kaouah, F., Effect of the ammonium chloride concentration on the mineral medium composition – biodegradation of phenol by a microbial consortium. Int. J. Environ. Res. 4 (2010), 849–854.
Hamitouche, A., Bendjama, Z., Relevance of the Luong model to describe the biodegradation of phenol by mixed culture in a batch reactor. Ann. Microbiol. 62 (2012), 581–586, 10.1007/s13213-011-0294-6.
Imadalou-Idres, N., Boudrioua, A., Bacha-Bourouina, S., Benallaoua, S., OPTIMIZATION OF PHYSICO-chemical conditions for growth and ANTI-ARCHAEAL production BY haloarcula sp. SWO25 nacéra imadalou -idres* 1, AbdelHakim boudrioua 1, saliha bacha-bourouina 2 and said benallaoua 1. J. Microbiol. Food Sci. 7 (2018), 524–531, 10.15414/jmbfs.2018.7.5.524-531.
Iqbal, A., Arshad, M., Hashmi, I., Karthikeyan, R., Gentry, T.J., Schwab, A.P., Biodegradation of phenol and benzene by endophytic bacterial strains isolated from refinery wastewater-fed cannabis sativa. Environ. Technol. 39 (2017), 1705–1714, 10.1080/09593330.2017.1337232.
Ke, Q., Zhang, Yunge, Wu, X., Su, X., Wang, Y., Lin, H., Mei, R., Zhang, Yu, Za, M., Chen, C., Chen, J., Sustainable biodegradation of phenol by immobilized Bacillus sp. SAS19 with porous carbonaceous gels as carriers. J. Environ. Manag. 222 (2018), 185–189, 10.1016/j.jenvman.2018.05.061.
Koyande, A.K., Chew, K.W., Rambabu, K., Tao, Y., Chu, D., Show, P., Microalgae: a potential alternative to health supplementation for humans. Food Sci. Hum. Wellness 8 (2019), 16–24, 10.1016/j.fshw.2019.03.001.
Labella, A., Molero, R., Leiva-rebollo, R., Pérez-recuerda, R., Borrego, J.J., Science of the Total Environment Identification, resistance to antibiotics and bio film formation of bacterial strains isolated from a reverse osmosis system of a drinking water treatment plant. Sci. Total Environ., 774, 2021, 145718, 10.1016/j.scitotenv.2021.145718.
Lindner, A.V., Pleissner, D., Utilization of phenolic compounds by microalgae. Algal Res, 42, 2019, 101602, 10.1016/j.algal.2019.101602.
Lopez, S., Prieto, M., Dijkstra, J., Dhanoa, M.S., France, J., Statistical evaluation of mathematical models for microbial growth. Int. J. Food Microbiol. 96 (2004), 289–300, 10.1016/j.ijfoodmicro.2004.03.026.
Nair, C.I., Jayachandran, K., Shashidhar, S., Biodegradation of phenol. Afr. J. Biotechnol. 7 (2008), 4951–4958.
Peng, S.S., Ling, N.S., Rohana, A., Kinetics of biodegradation of phenol and p -nitrophenol by acclimated activated sludge. J. Phys. Sci. 29 (2018), 107–113.
Pradeep, N.V., Anupama, S., Navya, K., Shalini, H.N., Idris, M., Hampannavar, U.S., Biological removal of phenol from wastewaters: a mini review. Appl. Water Sci. 5 (2015), 105–112, 10.1007/s13201-014-0176-8.
Presser, K.A., Ratkowsky, D.A., Ross, T., Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appl. Environ. Microbiol. 63 (1997), 2355–2360.
Rambabu, K., Banat, F., Minh, Q., Ho, S., Ren, N., Environmental Science and Ecotechnology Biological remediation of acid mine drainage: review of past trends and current outlook. Environ. Sci. Ecotechnology, 2, 2020, 100024, 10.1016/j.ese.2020.100024.
Rodier, J., Legube, B., L'analyse de l'eau. 2009 Dunod.
Romano, A., Toraldo, G., Cavella, S., Masi, P., Description of leavening of bread dough with mathematical modelling. J. Food Eng. 83 (2007), 142–148, 10.1016/j.jfoodeng.2007.02.014.
Schoch, C.L., Ciufo, S., Domrachev, M., Hotton, C.L., Kannan, S., Khovanskaya, R., Leipe, D., Mcveigh, R., Neill, K.O., Robbertse, B., Sharma, S., Soussov, V., John, P., Sun, L., Turner, S., Karsch-mizrachi, I., NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database, 2020, 1–21, 10.1093/database/baaa062 2020.
Shah, H.N., Gharbia, S.E., MALDI ‐ TOF and Tandem MS for Clinical Microbiology, 2017, John Wiley & Sons Ltd, Chichester.
Show, P.L., Tan, C.P., Anuar, M.S., Ariff, A., Yusof, Y.A., Chen, S.K., Ling, T.C., Bioresource Technology Extractive fermentation for improved production and recovery of lipase derived from Burkholderia cepacia using a thermoseparating polymer in aqueous two-phase systems. Bioresour. Technol. 116 (2012), 226–233, 10.1016/j.biortech.2011.09.131.
Singh, P., Kumar, R., Critical review of microbial degradation of aromatic compounds and exploring potential aspects of furfuryl alcohol degradation. J. Polym. Environ. 27 (2019), 901–916, 10.1007/s10924-019-01416-z.
Stoilova, I., Krastanov, A., Stanchev, V., Daniel, D., Gerginova, M., Alexieva, Z., Biodegradation of high amounts of phenol, catechol, 2, 4-dichlorophenol and 2, 6-dimethoxyphenol by Aspergillus awamori cells. Enzym. Microb. Technol. 39 (2006), 1036–1041, 10.1016/j.enzmictec.2006.02.006.
Sun, S., Huang, S., Shi, Y., Shao, Y., Qiu, J., Sedjoah, R.A., Yan, Z., Ding, L., Zou, D., Xin, Z., Extraction, isolation, characterization and antimicrobial activities of non-extractable polyphenols from pomegranate peel. Food Chem., 351, 2021, 129232, 10.1016/j.foodchem.2021.129232.
Tang, D.Y.Y., Yew, G.Y., Koyande, A.K., Chew, K.W., Vo, D.-V.N., Show, P.L., Green technology for the industrial production of biofuels and bioproducts from microalgae: a review. Environ. Chem. Lett. 18 (2020), 1967–1985.
Tebbouche, L., Hank, D., Zeboudj, S., Namane, A., Evaluation of the phenol biodegradation by Aspergillus Niger: application of full factorial design methodology. Desalin. Water Treat. 57 (2015), 6124–6130, 10.1080/19443994.2015.1053991.
Ucun, H., Yildiz, E., Nuhoglu, A., Bioresource Technology Phenol biodegradation in a batch jet loop bioreactor ( JLB ): kinetics study and pH variation. Bioresour. Technol. 101 (2010), 2965–2971, 10.1016/j.biortech.2009.12.005.
Wang, Y., Meng, F., Li, H., Zhao, S., Liu, Q., Lin, Y., Wang, G., Wu, J., Biodegradation of phenol by Isochrysis galbana screened from eight species of marine microalgae: growth kinetic models, enzyme analysis and biodegradation pathway. J. Appl. Phycol. 31 (2019), 445–455.
Xie, B., Liang, H., You, H., Deng, S., Yan, Z., Chemosphere Microbial community dynamic shifts associated with sulfamethoxazole degradation in microbial fuel cells. Chemosphere, 274, 2021, 129744, 10.1016/j.chemosphere.2021.129744.
Xie, B., Tang, X., Yong, H., Deng, S., Shi, X., Biological sulfamethoxazole degradation along with anaerobically digested centrate treatment by immobilized microalgal-bacterial consortium: performance, mechanism and shifts in bacterial and microalgal communities. Chem. Eng. J., 388, 2020, 124217, 10.1016/j.cej.2020.124217.
Yang, R. Der, Humphrey, A.E., Dynamic and steady state studies of phenol biodegradation in pure and mixed cultures. Biotechnol. Bioeng. 17 (1975), 1211–1235.
Yew, G.Y., Tan, X., Wayne, K., Chang, J., Tao, Y., Jiang, N., Loke, P., Thermal-Fenton mechanism with sonoprocessing for rapid non-catalytic transesterification of microalgal to biofuel production. Chem. Eng. J., 408, 2021, 127264, 10.1016/j.cej.2020.127264.
Zhai, Z., Wang, H., Yan, S., Yao, J., Biodegradation of phenol at high concentration by a novel bacterium: gulosibacter sp. YZ4. J. Chem. Technol. Biotechnol. 87 (2012), 105–111, 10.1002/jctb.2689.
Zou, S., Zhang, B., Yan, N., Zhang, C., Xu, H., Zhang, Y., Rittmann, B.E., Competition for molecular oxygen and electron donor between phenol and quinoline during their simultaneous biodegradation. Process Biochem. 70 (2018), 136–143, 10.1016/j.procbio.2018.04.015.
Zwietering, M.H., Jongenburger, I., Rombouts, F.M., Van't Riet, K., Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56 (1990), 1875–1881.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.