[en] We present in this study the synthesis and characterization of a new 3,3-dimethyl-substituted 1,2,4-benzothiadiazine 1,1-dioxide. 3,3-dimethyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide 10, was obtained by reacting 2-aminobenzenesulfonamide with acetone. The molecular structures of the starting sulfonamide and the new benzothiadiazine were obtained by X-ray diffraction analysis and the interactions like hydrogen bonds stabilizing the crystal packing were discussed. The contacts are confirmed by non-covalent interaction analysis. Analyses of Hirshfeld surface mapped over di, de, dnorm and shape-index were further used to identify the intermolecular interactions. The fingerprint histogram allow to show that H•••H (45.7%) and O•••H (30.1%) contacts are the dominant interactions in the crystal packing of 10. The effects of the molecular environment were accessed by analyzing the electron density isosurface and the 3D-topology of energy frameworks. The prediction of physicochemical properties suggested that 10 could be considered as a lead-like drug. Therefore, molecular docking study was performed on the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and suggested that 10 could interact with the allosteric site located on the ligand binding domain of AMPAR and could be a positive allosteric modulator. Docking results show that 10 can bind in a symmetrical way in the GluA2 ligand binding domain with two molecules at the dimer interface. The results also demonstrated that the presence of two methyl groups at the 3-position of the thiadiazine ring induced rotation of 10 in the binding site leading to close contacts with Pro494, Ser497, Ser729 and Ser754.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Chemistry
Author, co-author :
Etse, Koffi Senam ; Université de Liège - ULiège > Département de pharmacie > Chimie analytique
Zaragoza, Guillermo; Universidade de Santiago de Compostela, Spain. > Campus VIDA, 15782 Santiago de Compostela, > Unidade de Difracción de Raios X, RIAIDT.
Etse, Kodjo Djidjolé
Language :
English
Title :
Easy preparation of novel 3,3-dimethyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide: Molecular structure, Hirshfeld surface, NCI analyses and molecular docking on AMPA receptors
Bliss, T.V.P., Collingridge, G.L., Synaptic model of memory: long-term potentiation in the hippocampus. Nature 361 (1993), 31–39.
Henley, J.M., Wilkinson, K.A., Synaptic AMPA receptor composition in development, plasticity and disease. Nat. Rev. Neurosci. 17 (2016), 337–350.
Lauterborn, J.C., Lynch, G., Vanderklish, P., Arai, A., Gall, C.M., Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons. J. Neurosci. 20 (2000), 8–21.
Nagarajan, N., Quast, C., Boxall, A.R., Shahid, M., Rosenmund, C., Mechanism and impact of allosteric AMPA receptor modulation by the Ampakine CX546. Neuropharmacology 41 (2001), 650–663.
Arai, A.C., Kessler, M., Rodgers, G., Lynch, G., Effects of the Potent Ampakine CX614 on hippocampal and recombinant AMPA receptors: interactions with cyclothiazide and GYKI 52466. Mol. Pharm. 58 (2000), 802–813.
Weeks, A.M., Harms, J.E., Partin, K.M., Benveniste, M., Functional Insight into Development of Positive Allosteric Modulators of AMPA Receptors. Neuropharmacology 85 (2014), 57–66.
Jin, R., Clark, S., Weeks, A.M., Dudman, J.T., Gouaux, E., Partin, K.M., Mechanism of Positive Allosteric Modulators Acting on AMPA Receptors. J. Neurosci. 25 (2005), 9027–9036.
Meyerson, J.R., Kumar, J., Chittori, S., Rao, P., Pierson, J., Bartesaghi, A., Mayer, M.L., Subramaniam, S., Structural Mechanism of Glutamate Receptor Activation and Desensitization. Nature 514 (2014), 328–334.
Bertolino, M., Baraldi, M., Parenti, C., Braghiroli, D., DiBella, M., Vicini, S., Costa, E., Modulation of AMPA/kainate Receptors by Analogues of Diazoxide and Cyclothiazide in Thin Slices of Rat Hippocampus. Receptors Channels 1 (1993), 267–278.
Pirotte, B., Francotte, P., Goffin, E., de Tullio, P., AMPA Receptor Positive Allosteric Modulators: a Patent Review. Expert Opin. Ther. Pat. 2 (2013), 615–628.
Nørholm, A.B., Francotte, P., Olsen, L., Krintel, C., Frydenvang, K., Goffin, E., Challal, S., Danober, L., Botez-Pop, I., Lestage, P., Pirotte, B., Kastrup, J.S., Synthesis, pharmacological and structural characterization, and thermodynamic aspects of GluA2-positive allosteric modulators with a 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide scaffold. J. Med. Chem. 56 (2013), 8736–8745.
Francotte, P., Goffin, E., Fraikin, P., Lestage, P., Van Heugen, J.C., Gillotin, F., Danober, L., Thomas, J.Y., Chiap, P., Caignard, D.H., Pirotte, B., de Tullio, P., New fluorinated 1,2,4-benzothiadiazine 1,1-dioxides: discovery of an orally active cognitive enhancer acting through potentiation of the 2-amino-3-(3-hydroxy-5-methylisoxazol-4- yl)propionic acid receptors. J. Med. Chem. 53 (2010), 1700–1711.
Goffin, E., Drapier, T., Larsen, A.P., Geubelle, P., Ptak, C.P., Laulumaa, S., Rovinskaja, K., Gilissen, J., de Tullio, P., Olsen, L., Frydenvang, K., Pirotte, B., Hanson, J., Oswald, R.E., Kastrup, J.S., Francotte, P., 7‑Phenoxy-Substituted 3,4-Dihydro‑2H‑1,2,4-benzothiadiazine 1,1-Dioxides as Positive Allosteric Modulators of α‑Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors with Nanomolar Potency. J. Med. Chem. 61 (2018), 251–264.
Drapier, T., Geubelle, P., Bouckaert, C., Nielsen, L., Laulumaa, S., Goffin, E., Dilly, S., Francotte, P., Hanson, J., Pochet, L., Kastrup, J.S., Pirotte, B., Enhancing Action of Positive Allosteric Modulators through the Design of Dimeric Compounds. J. Med. Chem. 61 (2018), 5279–5291.
Phillips, D., Sonnenberg, J., Arai, A.C., Vaswani, R., OKrutzik, P., Kleisli, T., Kessler, M., Granger, R., Lynch, G., Chamberlin, A.R., 5′-Alkyl-benzothiadiazides: a New Subgroup of AMPA Receptor Modulators with Improved Affinity. Bioorg. Med. Chem. 10 (2002), 1229–1248.
Liu, S., Bao, J., Lao, X., Zheng, H., Novel 3D Structure Based Model for Activity Prediction and Design of Antimicrobial Peptides. Sci. Rep., 8, 2018, 11189.
Fernandes, M.B., Scotti, M.T., Ferreira, M.J.P., Emerenciano, V.P., Use of self-organizing maps and molecular descriptors to predict the cytotoxic activity of sesquiterpene lactones. Eur. J. Med. Chem. 43 (2008), 2197–2205.
Fulmer, G.R., Miller, A.J.M., Sherden, N.H., Gottlieb, H.E., Nudelman, A., Stoltz, B.M., Bercaw, J.E., Goldberg, K.I., NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 29 (2010), 2176–2179.
Girard, Y., Atkinson, J.G., Rokach, J.A., New Synthesis of 1,2,4-Benzothiadiazines and a Selective Preparation of o-Aminobenzenesulphonamides. J. Chem. Soc., Perkin Trans. 1 (1979), 1043–1047.
Etsè, K.S., Comeron Lamela, L., Zaragoza, G., Pirotte, B., Synthesis, crystal structure, Hirshfeld surface and interaction energies analysis of 5-methyl-1,3-bis(3-nitrobenzyl)pyrimidine-2,4(1H,3H)-dione. Eur. J. Chem. 11 (2020), 91–99.
Bruker APEX II Bruker AXS Inc., Madison, WI, USA, 2004.
Sheldrick, G.M., SHELXT–Integrated space-group and crystal-structure determination. Acta Cryst. A 71 (2015), 3–8.
Sheldrick, G.M., PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Cryst. C 71 (2015), 3–8.
Farrugia, L.J., WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45 (2012), 849–854.
Macrae, C.F., Bruno, I.J., Chisholm, J.A., Edgington, P.R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., Van de Streek, J., Wood, P.A., Mercury CSD 2.0–new features for the visualization and investigation of crystal structures. J. Appl. Cryst. 41 (2008), 466–470.
Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30 (2009), 2785–2791.
DeLano, W.L., PyMOL DeLanoScientific, 700, 2002, San Carlos, CA.
Etsè, K.S., Zaragoza, G., Pirotte, B., Crystal structure and Hirshfeld surface analysis of N-(2-(N-methylsulfamoyl)phenyl)formamide: degradation product of 2-methyl-2H-1,2,4-benzothiadiazine 1,1-dioxide. Eur. J. Chem. 10 (2019), 189–194.
Etsè, K.S., Dassonneville, B., Zaragoza, G., Demonceau, A., One-pot, Pd/Cu-catalysed synthesis of alkynyl-substituted 3-ylidenedihydrobenzo[d]isothiazole 1,1-dioxides. Tet. Lett. 58 (2017), 789–793.
Turner, M.J., McKinnon, J.J., Wolff, S.K., Grimwood, D.J., Spackman, P.R., Jayatilaka, D., Spackman, M.A., Crystal Explorer, 17, 2017, The University of Western Australia http://hirshfeldsurface. net.
Spackman, M.A., Jayatilaka, D., CrystEngComm. 11 (2009), 19–32.
McKinnon, J.J., Spackman, M.A., Mitchell, A.S., Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Cryst. B 60 (2004), 627–668.
McKinnon, J.J., Jayatilaka, D., Spackman, M.A., Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun., 2007, 3814–3816.
Turner, M.J., Thomas, S.P., Shi, M.W., Jayatilaka, D., Spackman, M.A., Energy frameworks: insights into interaction anisotropy and the mechanical properties of molecular crystals. Chem. Commun. 51 (2015), 3735–3738.
Turner, M.J., Grabowsky, S., Jayatilaka, D., Spackman, M.A., Accurate and efficient model energies for exploring intermolecular interactions in molecular crystals. J. Phys. Chem. Lett. 5 (2014), 4249–4255.
Mackenzie, C.F., Spackman, P.R., Jayatilaka, D., Spackman, M.A., CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 4 (2017), 575–587.
Tan, S.L., Jotani, M.M., Tiekink, E.R.T., Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Cryst E75 (2019), 308–318.
Cremer, D., Pople, J.A., General definition of ring puckering coordinates. J. Am. Chem. Soc. 97 (1975), 1354–1358.
Malone, J.F., Murray, C.M., Charlton, M.H., Docherty, R., Lavery, A.J., X-H— π(phenyl) interactions theoretical and crystallographic observations. J. Chem. Soc. Faraday Trans. 93 (1997), 3429–3436.
Schwarz, W.H.E., Ruedenberg, K., Mensching, L., Chemical deformation densities. 1. Principles and formulation of quantitative determination. J. Am. Chem. Soc. 111 (1989), 6926–6933.
Meenatchi, V., Meenakshisundaram, S.P., Synthesis, growth, spectral studies, first-order molecular hyperpolarizability and Hirshfeld surface analysis of isonicotinohydrazide single crystals. RSC Adv. 5 (2015), 64180–64191.
Edwards, A.J., Mackenzie, C.F., Spackman, P.R., Jayatilaka, D., Spackman, M.A., Intermolecular interactions in molecular crystals: what's in a name?. Faraday Discuss 203 (2017), 93–112.
Turner, M.J., McKinnon, J.J., Jayatilaka, D., Spackman, M.A., Visualisation and characterisation of voids in crystalline materials. CrystEngComm 13 (2011), 1804–1813.
Thomas, S.P., Sathishkumar, R., Guru Row, T.N., Organic alloys of room temperature liquids thiophenol and selenophenol. Chem. Commun. 51 (2015), 14255–14258.
Johnson, E.R., Keinan, S., Mori-Sanchez, P., Contreras-García, J., Cohen, A.J., Yang, W., Revealing non covalent interactions. J. Am. Chem. Soc. 132 (2010), 6498–6506.
Lu, T., Chen, F., Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33 (2011), 580–592.
Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics. J. Mol. Graph. 14 (1996), 33–38.
Mabkhot, Y.N., Alatibi, F., El-sayed, N., Al-Showiman, S., Kheder, N., Wadood, A., Rauf, A., Bawazeer, S., Hadda, T.Ben B., Antimicrobial activity of some novel armed thiophene derivatives and petra/osiris/molinspiration (POM) analyses. Molecules 21 (2016), 222–238.
Organic Chemistry Portal. 2012. Available at http://www.organic-chemistry.org/prog/peo/.
Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46 (2001), 3–26.
Oprea, T.I., Davis, A.M., Teague, S.J., Leeson, P.D., Is there a difference between leads and drugs? A historical perspective. J. Chem. Inf. Comput. Sci. 41 (2001), 1308–1315.
Congreve, M., Carr, R., Murray, C., Jhoti, H., A ‘rule of three’ for fragment-based lead discovery?. Drug Discov. Today 8 (2003), 876–877.
Larsen, A.P., Francotte, P., Frydenvang, K., Tapken, D., Goffin, E., Fraikin, P., Caignard, D.H., Lestage, P., Danober, L., Pirotte, B., Kastrup, J.S., Synthesis and Pharmacology of Mono-, Di-, and Trialkyl-Substituted 7-Chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-Dioxides Combined with X-ray Structure Analysis to Understand the Unexpected Structure-Activity Relationship at AMPA Receptors. ACS Chem. Neurosci. 7 (2016), 378–390.
Krintel, C., Francotte, P., Pickering, D.S., Juknaitė, L., Pøhlsgaard, J., Olsen, L., Frydenvang, K., Goffin, E., Pirotte, B., Kastrup, J.S., Enthalpy-Entropy Compensation in the Binding of Modulators at Ionotropic Glutamate Receptor GluA2. Biophys. J. 110 (2016), 2397–2406.