Modave, Axel ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Royer, Anthony ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Antoine, Xavier
Geuzaine, Christophe ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Language :
English
Title :
A non-overlapping domain decomposition method with high-order transmission conditions and cross-point treatment for Helmholtz problems
Publication date :
2020
Journal title :
Computer Methods in Applied Mechanics and Engineering
ISSN :
0045-7825
eISSN :
1879-2138
Publisher :
Elsevier, Amsterdam, Netherlands
Volume :
368
Pages :
113162
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif Tier-1 supercomputer
Funders :
Wallonia-Brussels Federation
Funding text :
This research was funded in part through the ARC grant for Concerted Research Actions (ARC WAVES 15/19-03), financed by the Wallonia-Brussels Federation of Belgium.
Nédélec, J., Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Problems Applied Mathematical Sciences, 2001, Springer.
Chen, G., Zhou, J., Boundary Element Methods. 1992, Academic Press, New York.
Christiansen, S., Nédélec, J., Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l'acoustique. C. R. Acad. Sci., Paris I 330:7 (2000), 617–622.
Antoine, X., Darbas, M., Generalized combined field integral equations for the iterative solution of the three-dimensional Helmholtz equation. Math. Model. Numer. Anal. 41:1 (2007), 147–167.
Rokhlin, V., Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys. 86:2 (1990), 414–439.
Bruno, O.P., Kunyansky, L.A., A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications. J. Comput. Phys. 169:1 (2001), 80–110.
Bruno, O.P., Kunyansky, L.A., A sparse matrix arithmetic based on H-matrices. Part I: introduction to H-matrices, computing. Computing 62:2 (1999), 89–108.
Givoli, D., Non-reflecting boundary conditions. J. Comput. Phys. 94:1 (1991), 1–29.
Bonnet-Ben Dhia, A.-S., Fliss, S., Tonnoir, A., The halfspace matching method: A new method to solve scattering problems in infinite media. J. Comput. Appl. Math. 338 (2018), 44–68.
de La Bourdonnaye, A., Some formulations coupling finite element and integral equation methods for Helmholtz equation and electromagnetism. Numer. Math. 69:3 (1995), 257–268.
Engquist, B., Majda, A., Absorbing boundary conditions for numerical simulation of waves. Proc. Natl. Acad. Sci. 74:5 (1977), 1765–1766.
Antoine, X., Darbas, M., Lu, Y.Y., An improved surface radiation condition for high-frequency acoustic scattering problems. Comput. Methods Appl. Mech. Engrg. 195:33–36 (2006), 4060–4074.
Kechroud, R., Antoine, X., Soulaimani, A., Numerical accuracy of a Padé-type non-reflecting boundary condition for the finite element solution of acoustic scattering problems at high-frequency. Internat. J. Numer. Methods Engrg. 64:10 (2005), 1275–1302.
Berenger, J.-P., A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114:2 (1994), 185–200.
Turkel, E., Yefet, A., Absorbing PML boundary layers for wave-like equations. Appl. Numer. Math. 27:4 (1998), 533–557.
Bermúdez, A., Hervella-Nieto, L., Prieto, A., Rodriguez, R., An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems. J. Comput. Phys. 223:2 (2007), 469–488.
Modave, A., Geuzaine, C., Antoine, X., Corner treatments for high-order local absorbing boundary conditions in high-frequency acoustic scattering. J. Comput. Phys., 401, 2020, 109029.
Quarteroni, A., Valli, A., Domain Decomposition Methods for Partial Differential Equations Numerical Mathematics and Scientific Computation, 1999, The Clarendon Press, Oxford University Press, New York.
Toselli, A., Widlund, O., Domain Decomposition Methods-Algorithms and Theory, Vol. 34. 2006, Springer Science & Business Media.
Dolean, V., Jolivet, P., Nataf, F., An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation, Vol. 144. 2015, SIAM.
Cai, X.-C., Widlund, O.B., Domain decomposition algorithms for indefinite elliptic problems. SIAM J. Sci. Stat. Comput. 13:1 (1992), 243–258.
Kimn, J.-H., Sarkis, M., Restricted overlapping balancing domain decomposition methods and restricted coarse problems for the Helmholtz problem. Comput. Methods Appl. Mech. Engrg. 196:8 (2007), 1507–1514.
Gander, M.J., Zhang, H., Optimized Schwarz methods with overlap for the Helmholtz equation. SIAM J. Sci. Comput. 38:5 (2016), A3195–A3219.
Benamou, J.-D., Desprès, B., A domain decomposition method for the Helmholtz equation and related optimal control problems. J. Comput. Phys. 136:1 (1997), 68–82.
Collino, F., Ghanemi, S., Joly, P., Domain decomposition method for harmonic wave propagation: a general presentation. Comput. Methods Appl. Mech. Engrg. 184:2–4 (2000), 171–211.
Gander, M., Magoules, F., Nataf, F., Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24:1 (2002), 38–60.
de La Bourdonnaye, A., Farhat, C., Macedo, A., Magoules, F., Roux, F.-X., et al. A non-overlapping domain decomposition method for the exterior Helmholtz problem. Contemp. Math. 218 (1998), 42–66.
Farhat, C., Macedo, A., Lesoinne, M., A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems. Numer. Math. 85:2 (2000), 283–308.
Farhat, C., Macedo, A., Lesoinne, M., Roux, F.-X., Magoulés, F., de La Bourdonnaie, A., Two-level domain decomposition methods with Lagrange multipliers for the fast iterative solution of acoustic scattering problems. Comput. Methods Appl. Mech. Engrg. 184:2–4 (2000), 213–239.
Farhat, C., Avery, P., Tezaur, R., Li, J., FETI-DPH: a dual-primal domain decomposition method for acoustic scattering. J. Comput. Acoust. 13:03 (2005), 499–524.
Zepeda-Núñez, L., Demanet, L., The method of polarized traces for the 2D Helmholtz equation. J. Comput. Phys. 308 (2016), 347–388.
Conen, L., Dolean, V., Krause, R., Nataf, F., A coarse space for heterogeneous Helmholtz problems based on the Dirichlet-to-Neumann operator. J. Comput. Appl. Math. 271 (2014), 83–99.
Ganesh, M., Morgenstern, C., High-order FEM domain decomposition models for high-frequency wave propagation in heterogeneous media. Comput. Math. Appl. 75:6 (2018), 1961–1972.
Graham, I., Spence, E., Vainikko, E., Domain decomposition preconditioning for high-frequency Helmholtz problems with absorption. Math. Comp. 86:307 (2017), 2089–2127.
Stolk, C.C., A rapidly converging domain decomposition method for the Helmholtz equation. J. Comput. Phys. 241 (2013), 240–252.
Stolk, C.C., An improved sweeping domain decomposition preconditioner for the Helmholtz equation. Adv. Comput. Math. 43:1 (2017), 45–76.
Vion, A., Geuzaine, C., Double sweep preconditioner for optimized Schwarz methods applied to the Helmholtz problem. J. Comput. Phys. 266 (2014), 171–190.
Gander, M.J., Zhang, H., A class of iterative solvers for the Helmholtz equation: Factorizations, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz methods. SIAM Rev. 61:1 (2019), 3–76.
Hagstrom, T., Tewarson, R.P., Jazcilevich, A., Numerical experiments on a domain decomposition algorithm for nonlinear elliptic boundary value problems. Appl. Math. Lett. 1:3 (1988), 299–302.
Nataf, F., Rogier, F., de Sturler, E., Optimal interface conditions for domain decomposition methods. CMAP (Ecole Polytech.) 301 (1994), 1–18.
Després, B., Domain decomposition method and the Helmholtz problem. Cohen, G., Halpern, L., Joly, P., (eds.) Proceedings of the First International Conference on Mathematical and Numerical Aspects of Wave Propagation Phenomena, Strasbourg, France, 1991, SIAM, 44–52.
Piacentini, A., Rosa, N., An improved domain decomposition method for the 3D Helmholtz equation. Comput. Methods Appl. Mech. Engrg. 162:1–4 (1998), 113–124.
Boubendir, Y., Antoine, X., Geuzaine, C., A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation. J. Comput. Phys. 231:2 (2012), 262–280.
Boubendir, Y., Midura, D., Non-overlapping domain decomposition algorithm based on modified transmission conditions for the Helmholtz equation. Comput. Math. Appl. 75:6 (2018), 1900–1911.
Kim, S., Zhang, H., Optimized Schwarz method with complete radiation transmission conditions for the Helmholtz equation in waveguides. SIAM J. Numer. Anal. 53:3 (2015), 1537–1558.
Marsic, N., Gersem, H.D., Convergence of optimized non-overlapping Schwarz method for Helmholtz problems in closed domains. 2020 Preprint http://arxiv.org/abs/2001.01502.
Schädle, A., Zschiedrich, L., Additive Schwarz method for scattering problems using the PML method at interfaces. Domain Decomposition Methods in Science and Engineering XVI, 2007, Springer, 205–212.
Astaneh, A.V., Guddati, M.N., A two-level domain decomposition method with accurate interface conditions for the Helmholtz problem. Internat. J. Numer. Methods Engrg. 107:1 (2016), 74–90.
Lecouvez, M., Stupfel, B., Joly, P., Collino, F., Quasi-local transmission conditions for non-overlapping domain decomposition methods for the Helmholtz equation. C. R. Phys. 15:5 (2014), 403–414.
Stupfel, B., Improved transmission conditions for a one-dimensional domain decomposition method applied to the solution of the Helmholtz equation. J. Comput. Phys. 229:3 (2010), 851–874.
Collino, F., Joly, P., Lecouvez, M., Exponentially convergent non overlapping domain decomposition methods for the Helmholtz equation. ESAIM Math. Model. Numer. Anal. 54:3 (2020), 775–810.
Gander, M.J., Kwok, F., Best Robin parameters for optimized Schwarz methods at cross points. SIAM J. Sci. Comput. 34:4 (2012), A1849–A1879.
Gander, M.J., Kwok, F., On the applicability of Lions’ energy estimates in the analysis of discrete optimized Schwarz methods with cross points. Domain Decomposition Methods in Science and Engineering XX, 2013, Springer, 475–483.
Loisel, S., Condition number estimates for the nonoverlapping optimized Schwarz method and the 2-Lagrange multiplier method for general domains and cross points. SIAM J. Numer. Anal. 51:6 (2013), 3062–3083.
Gander, M.J., Santugini, K., Cross-points in domain decomposition methods with a finite element discretization. Electron. Trans. Numer. Anal. 45 (2016), 219–240.
Boubendir, Y., Bendali, A., Dealing with cross-points in a non-overlapping domain decomposition solution of the Helmholtz equation. Mathematical and Numerical Aspects of Wave Propagation, WAVES 2003, 2003, Springer, 319–324.
Bendali, A., Boubendir, Y., Non-overlapping domain decomposition method for a nodal finite element method. Numer. Math. 103:4 (2006), 515–537.
B. Després, A. Nicolopoulos, B. Thierry, New transmission conditions for corners and cross-points, in: Proceedings of the 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation Phenomena, Vienna, Austria, 2019.
Nicolopoulos, A., Formulations variationnelles d’équations de Maxwell résonantes et problèmes aux coins en propagation d'ondes. (Ph.D. thesis), 2019, Sorbonne Université.
Claeys, X., A new variant of the Optimised Schwarz Method for arbitrary non-overlapping subdomain partitions. 2019 Preprint http://arxiv.org/abs/1910.05055.
Claeys, X., Parolin, E., Robust treatment of cross points in Optimized Schwarz Methods. 2020 Preprint http://arxiv.org/abs/2003.06657.
Leng, W., Ju, L., An additive overlapping domain decomposition method for the Helmholtz equation. SIAM J. Sci. Comput. 41:2 (2019), A1252–A1277.
Milinazzo, F.A., Zala, C.A., Brooke, G.H., Rational square-root approximations for parabolic equation algorithms. J. Acoust. Soc. Am. 101:2 (1997), 760–766.
Bayliss, A., Turkel, E., Radiation boundary conditions for wave-like equations. Commun. Pure Appl. Math. 33:6 (1980), 707–725.
Antoine, X., Barucq, H., Bendali, A., Bayliss–Turkel-like radiation conditions on surfaces of arbitrary shape. J. Math. Anal. Appl. 229:1 (1999), 184–211.
Thierry, B., Vion, A., Tournier, S., El Bouajaji, M., Colignon, D., Marsic, N., Antoine, X., Geuzaine, C., GetDDM: an open framework for testing optimized Schwarz methods for time-harmonic wave problems. Comput. Phys. Comm. 203 (2016), 309–330.
Geuzaine, C., Remacle, J.-F., Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. Internat. J. Numer. Methods Engrg. 79:11 (2009), 1309–1331.
Dular, P., Geuzaine, C., Henrotte, F., Legros, W., A general environment for the treatment of discrete problems and its application to the finite element method. IEEE Trans. Magn. 34:5 (1998), 3395–3398.
Engquist, B., Ying, L., Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers. Multiscale Model. Simul. 9:2 (2011), 686–710.
Taus, M., Zepeda-Núñez, L., Hewett, R.J., Demanet, L., L-Sweeps: A scalable, parallel preconditioner for the high-frequency Helmholtz equation. 2019 Preprint http://arxiv.org/abs/1909.01467.
Vion, A., Geuzaine, C., Improved sweeping preconditioners for domain decomposition algorithms applied to time-harmonic Helmholtz and Maxwell problems. ESAIM Proc. Surv. 61 (2018), 93–111.
Bonazzoli, M., Dolean, V., Graham, I.G., Spence, E.A., Tournier, P.-H., Two-level preconditioners for the Helmholtz equation. International Conference on Domain Decomposition Methods, 2017, Springer, 139–147.
Modave, A., Atle, A., Chan, J., Warburton, T., A GPU-accelerated nodal discontinuous Galerkin method with high-order absorbing boundary conditions and corner/edge compatibility. Internat. J. Numer. Methods Engrg. 112:11 (2017), 1659–1686.
Erlangga, Y.A., Oosterlee, C.W., Vuik, C., A novel multigrid based preconditioner for heterogeneous Helmholtz problems. SIAM J. Sci. Comput. 27:4 (2006), 1471–1492.
El Bouajaji, M., Antoine, X., Geuzaine, C., Approximate local magnetic-to-electric surface operators for time-harmonic Maxwell's equations. J. Comput. Phys. 279 (2014), 241–260.
El Bouajaji, M., Thierry, B., Antoine, X., Geuzaine, C., A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations. J. Comput. Phys. 294 (2015), 38–57.
Chaillat, S., Darbas, M., Le Louër, F., Approximate local Dirichlet-to-Neumann map for three-dimensional time-harmonic elastic waves. Comput. Methods Appl. Mech. Engrg. 297 (2015), 62–83.
Mattesi, V., Darbas, M., Geuzaine, C., A high-order absorbing boundary condition for 2D time-harmonic elastodynamic scattering problems. Comput. Math. Appl. 77:6 (2019), 1703–1721.