Geuzaine, Christophe ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Toulorge, Thomas; Cemef - Mines ParisTech, rue Claude Daunesse 1, Sophia-Antipolis, France
Remacle, Jean-François; Université Catholique de Louvain - UCL > Institute of Mechanics, Materials and Civil Engineering (iMMC), Avenue Georges Lemaitre 4, Louvain-la-Neuve, Belgium
Language :
English
Title :
Efficient computation of the minimum of shape quality measures on curvilinear finite elements
Publication date :
2018
Journal title :
Computer-Aided Design
ISSN :
0010-4485
Publisher :
Elsevier Ltd
Volume :
103
Pages :
24-33
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Walloon region
Funding text :
This research project was funded in part by the Walloon Region under WIST 3 grant 1017074 (DOMHEX) and by TILDA project. The TILDA (Towards Industrial LES/DNS in Aeronautics - Paving theWay for Future Accurate CFD) project has received funding from the European Unions Horizon 2020 research and innovation programm under grant agreement No 635962. The project is a collaboration between NUMECA, DLR, ONERA, DASSAULT, SAFRAN, CERFACS, CENAERO, UCL, UNIBG, ICL and TsAGI. ASRF, Applied Scientific Research Fund; 635962, Horizon 2020; UCL, University College London; DLR, Deutsches Zentrum für Luft- und Raumfahrt; 1017074
Wang, Z.J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., et al. High-order CFD methods: current status and perspective. Internat J Numer Methods Fluids 72:8 (2013), 811–845.
Kirby, R.M., Sherwin, S.J., Cockburn, B., To CG or to HDG: a comparative study. J Sci Comput 51:1 (2012), 183–212.
Vos, P.E.J., Sherwin, S.J., Kirby, R.M., From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low-and high-order discretisations. J Comput Phys 229:13 (2010), 5161–5181.
Karniadakis, G., Sherwin, S., Spectral/hp element methods for computational fluid dynamics. 2013, Oxford University Press.
Babuška, I., Szabo, B.A., Katz, I.N., The p-version of the finite element method. SIAM J Numer Anal 18:3 (1981), 515–545.
Babuška, I., Guo, B.Q., The h-p version of the finite element method for domains with curved boundaries. SIAM J Numer Anal 25:4 (1988), 837–861.
Knupp, P.M., Algebraic mesh quality metrics for unstructured initial meshes. Finite Elem Anal Des 39:3 (2003), 217–241.
Sherwin, S.J., Peiró J., Mesh generation in curvilinear domains using high-order elements. Internat J Numer Methods Engrg 53:1 (2002), 207–223.
Luo, X., Shephard, M.S., O'bara, R.M., Nastasia, R., Beall, M.W., Automatic p-version mesh generation for curved domains. Eng Comput 20:3 (2004), 273–285.
Persson P-O, Peraire J. Curved mesh generation and mesh refinement using Lagrangian solid mechanics. In: 47th AIAA aerospace sciences meeting; 2009.
Xie, Z.Q., Sevilla, R., Hassan, O., Morgan, K., The generation of arbitrary order curved meshes for 3D finite element analysis. Comput Mech 51:3 (2013), 361–374.
Abgrall, R., Dobrzynski, C., Froehly, A., A method for computing curved meshes via the linear elasticity analogy, application to fluid dynamics problems. Internat J Numer Methods Fluids 76:4 (2014), 246–266.
Moxey, D., Green, M., Sherwin, S., Peiró J., An isoparametric approach to high-order curvilinear boundary-layer meshing. Comput Methods Appl Mech Engrg 283 (2015), 636–650.
Fortunato, M., Persson, P.-O., High-order unstructured curved mesh generation using the Winslow equations. J Comput Phys 307 (2016), 1–14.
Liu T, Wang L, Karman Jr SL, Hilbert CB. Automatic 2D high-order viscous mesh generation by Spring-Field and vector-adding. In: 54th AIAA aerospace sciences meeting; 2016.
Shoemake, W.L., Linear elastic mesh deformation via localized orthotropic material properties optimized by the adjoint method. [Ph.D. thesis], 2017, Dean, College.
Roca, X., Gargallo-Peiró A., Sarrate, J., Defining quality measures for high-order planar triangles and curved mesh generation. Proceedings of the 20th international meshing roundtable, 2012, Springer, 365–383.
Gargallo-Peiró A., Roca, X., Peraire, J., Sarrate, J., Distortion and quality measures for validating and generating high-order tetrahedral meshes. Eng Comput, 2014, 1–15.
Gargallo Peiró A., Validation and generation of curved meshes for high-order unstructured methods. [Ph.D. thesis], 2014, Universitat Politècnica de Catalunya.
Lowrie, W., Lukin, V., Shumlak, U., A priori mesh quality metric error analysis applied to a high-order finite element method. J Comput Phys 230:14 (2011), 5564–5586.
Sastry, S.P., Kirby, R.M., On interpolation errors over quadratic nodal triangular finite elements. Proceedings of the 22nd international meshing roundtable, 2014, Springer, 349–366.
Bergot, M., Cohen, G., Duruflé M., Higher-order finite elements for hybrid meshes using new nodal pyramidal elements. J Sci Comput 42:3 (2010), 345–381.
Szabo, B.A., Babuška, I., Finite element analysis. 1991, John Wiley & Sons.
Liu, A., Joe, B., On the shape of tetrahedra from bisection. Math Comp 63:207 (1994), 141–154.
Liu, A., Joe, B., Relationship between tetrahedron shape measures. BIT 34:2 (1994), 268–287.
Johnen, A., Indirect quadrangular mesh generation and validation of curved finite elements. [Ph.D. thesis], 2016, Université de Liège.
Dompierre, J., Labbé P., Guibault, F., Camarero, R., Proposal of benchmarks for 3D unstructured tetrahedral mesh optimization. Proceedings of the 7th international meshing roundtable, 1998, Citeseer.
Knupp, P.M., Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part I—A framework for surface mesh optimization. Internat J Numer Methods Engrg 48:3 (2000), 401–420.
Knupp, P.M., Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—A framework for volume mesh optimization and the condition number of the Jacobian matrix. Internat J Numer Methods Engrg 48:8 (2000), 1165–1185.
Yamakawa, S., Shimada, K., Fully-automated hex-dominant mesh generation with directionality control via packing rectangular solid cells. Internat J Numer Methods Engrg 57:15 (2003), 2099–2129.
Zhang, Y., Bajaj, C., Adaptive and quality quadrilateral/hexahedral meshing from volumetric data. Comput Methods Appl Mech Engrg 195:9 (2006), 942–960.
Ito, Y., Shih, A.M., Soni, B.K., Octree-based reasonable-quality hexahedral mesh generation using a new set of refinement templates. Internat J Numer Methods Engrg 77:13 (2009), 1809–1833.
Staten, M.L., Kerr, R.A., Owen, S.J., Blacker, T.D., Stupazzini, M., Shimada, K., Unconstrained plastering—Hexahedral mesh generation via advancing-front geometry decomposition. Internat J Numer Methods Engrg 81:2 (2010), 135–171.
Kowalski, N., Ledoux, F., Frey, P., Automatic domain partitioning for quadrilateral meshing with line constraints. Eng Comput, 2014, 1–17.
Lu, J.H.-C., Song, I., Quadros, W.R., Shimada, K., Geometric reasoning in sketch-based volumetric decomposition framework for hexahedral meshing. Eng Comput 30:2 (2014), 237–252.
Baudouin, T.C., Remacle, J.-F., Marchandise, E., Henrotte, F., Geuzaine, C., A frontal approach to hex-dominant mesh generation. Adv Model Simul Eng Sci 1:1 (2014), 1–30.
Geuzaine, C., Remacle, J.-F., Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. Internat J Numer Methods Engrg 79:11 (2009), 1309–1331.
George, P.-L., Borouchaki, H., Delaunay triangulation and meshing: application to finite elements. 1998, Hermes Paris.
Schöberl, J., NETGEN An advancing front 2D/3D-mesh generator based on abstract rules. Comput Vis Sci 1:1 (1997), 41–52.
Gargallo-Peiró A., Roca, X., Peraire, J., Sarrate, J., Optimization of a regularized distortion measure to generate curved high-order unstructured tetrahedral meshes. Internat J Numer Methods Engrg, 2015.
Ruiz-Gironés, E., Gargallo-Peiró A., Sarrate, J., Roca, X., An augmented lagrangian formulation to impose boundary conditions for distortion based mesh moving and curving. Procedia Eng 203 (2017), 362–374.