Antoine, X., Barucq, H., Bendali, A., Bayliss–Turkel-like radiation conditions on surfaces of arbitrary shape. J. Math. Anal. Appl. 229:1 (1999), 184–211.
Antoine, X., Darbas, M., Alternative integral equations for the iterative solution of acoustic scattering problems. Q. J. Mech. Appl. Math. 58:1 (2005), 107–128.
Antoine, X., Darbas, M., Generalized combined field integral equations for the iterative solution of the three-dimensional Helmholtz equation. Modél. Math. Anal. Numér. 41:1 (2007), 147–167.
Antoine, X., Darbas, M., Lu, Y.Y., An improved surface radiation condition for high-frequency acoustic scattering problems. Comput. Methods Appl. Mech. Eng. 195:33–36 (2006), 4060–4074.
Bachelot, A., Lange, V., Time dependent integral method for Maxwell's system with impedance boundary condition. WIT Trans. Model. Simul., 11, 1995.
Bayliss, A., Gunzburger, M., Turkel, E., Boundary conditions for the numerical solution of elliptic equations in exterior regions. SIAM J. Appl. Math. 42:2 (1982), 430–451.
Bendali, A., Boubendir, Y., Fares, M.B., A FETI-like domain decomposition method for coupling finite elements and boundary elements in large-size problems of acoustic scattering. Comput. Struct. 85:9 (2007), 526–535.
Bérenger, J.-P., A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114:2 (1994), 185–200.
Bergmann, P.G., The wave equation in a medium with a variable index of refraction. J. Acoust. Soc. Am. 17:4 (1946), 329–333.
Bermúdez, A., Hervella-Nieto, L., Prieto, A., Rodríguez, R., Perfectly matched layers for time-harmonic second order elliptic problems. Arch. Comput. Methods Eng. 17:1 (2010), 77–107.
Börm, S., Efficient Numerical Methods for Non-Local Operators: H2-Matrix Compression, Algorithms and Analysis, vol. 14. 2010, European Mathematical Society.
Boubendir, Y., Antoine, X., Geuzaine, C., A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation. J. Comput. Phys. 231:2 (2012), 262–280.
Boubendir, Y., Bendali, A., Fares, M.B., Coupling of a non-overlapping domain decomposition method for a nodal finite element method with a boundary element method. Int. J. Numer. Methods Eng. 73:11 (2008), 1624–1650.
Boubendir, Y., Jerez-Hanckes, C., Pérez-Arancibia, C., Turc, C., Domain decomposition methods based on quasi-optimal transmission operators for the solution of Helmholtz transmission problems. arXiv preprint arXiv:1710.02694, 2017.
Brezzi, F., Johnson, C., On the coupling of boundary integral and finite element methods. Calcolo 16:2 (1979), 189–201.
Caudron, B., Couplages FEM-BEM faibles et optimisés pour des problèmes de diffraction harmoniques en acoustique et en électromagnétisme. PhD thesis, 2018, Université de Lorraine, France, and Université de Liège, Belgique.
Colton, D., Kress, R., Integral Equation Methods in Scattering Theory. 2013, SIAM.
Costabel, M., Symmetric methods for the coupling of finite elements and boundary elements (invited contribution). Mathematical and Computational Aspects, 1987, Springer, 411–420.
de La Bourdonnaye, A., Some formulations coupling finite element and integral equation methods for Helmholtz equation and electromagnetism. Numer. Math. 69:3 (1995), 257–268.
Després, B., Méthodes de décomposition de domaine pour les problèmes de propagation d'ondes en régime harmonique. Le théorème de Borg pour l'équation de Hill vectorielle. PhD thesis, 1991.
Dolean, V., Jolivet, P., Nataf, F., An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation. 2015, SIAM.
Dular, P., Geuzaine, C., Henrotte, F., Legros, W., A general environment for the treatment of discrete problems and its application to the finite element method. IEEE Trans. Magn. 34:5 (1998), 3395–3398.
Engquist, B., Majda, A., Absorbing boundary conditions for numerical simulation of waves. Proc. Natl. Acad. Sci. USA 74:5 (1977), 1765–1766.
Ernst, O.G., Gander, M.J., Why it is difficult to solve Helmholtz problems with classical iterative methods. Numer. Anal. Multiscale Probl. 83 (2012), 325–363.
Gander, M.J., Magoulès, F., Nataf, F., Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24:1 (2002), 38–60.
Gatica, G.N., Variational formulations of transmission problems via FEM, BEM and DtN mappings. Comput. Methods Appl. Mech. Eng. 182:3–4 (2000), 341–354.
Greengard, L., Rokhlin, V., A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numer. 6 (1997), 229–269.
Hackbusch, W., Hierarchical Matrices: Algorithms and Analysis, vol. 49. 2015, Springer.
Ihlenburg, F., Babuska, I., Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation. Int. J. Numer. Methods Eng. 38 (1995), 3745–3774.
Johnson, C., Nédélec, J.-C., On the coupling of boundary integral and finite element methods. Math. Comput. 35:152 (1980), 1063–1079.
Lahaye, D., Tang, J., Vuik, K., Modern Solvers for Helmholtz Problems. 2017, Springer.
Langer, U., Steinbach, O., Coupled boundary and finite element tearing and interconnecting methods. Domain Decomposition Methods in Science and Engineering, 2005, 83–97.
Lions, P.-L., On the Schwarz alternating method III: a variant for non overlapping subdomains. Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, Houston, Texas, 1989, 20–22.
Modave, A., Geuzaine, C., Antoine, X., Corner treatments for high-order local absorbing boundary conditions in high-frequency acoustic scattering. J. Comput. Phys., 401, 2020, 109029.
Modave, A., Royer, A., Antoine, X., Geuzaine, C., A non-overlapping domain decomposition method with high-order transmission conditions and cross-point treatment for Helmholtz problems. Comput. Methods Appl. Mech. Eng., 368, 2020, 1131622020.
Nédélec, J.-C., Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, vol. 144. 2001, Springer-Verlag.
Of, G., Steinbach, O., Is the one-equation coupling of finite and boundary element methods always stable?. Z. Angew. Math. Mech. 93:6–7 (2013), 476–484.
Śmigaj, W., Betcke, T., Arridge, S., Phillips, J., Schweiger, M., Solving boundary integral problems with BEM++. ACM Trans. Math. Softw. 41:2 (2015), 6:1–6:40.
Solin, P., Segeth, K., Dolezel, I., Higher-Order Finite Element Methods. 2003, Chapman and Hall/CRC.
Toselli, A., Widlund, O.B., Domain Decomposition Methods: Algorithms and Theory, vol. 34. 2005, Springer.
Turkel, E., Yefet, A., Absorbing PML boundary layers for wave-like equations. Appl. Numer. Math. 27:4 (1998), 533–557.
Zienkiewicz, O.C., Kelly, D.W., Bettess, P., The coupling of the finite element method and boundary solution procedures. Int. J. Numer. Methods Eng. 11:2 (1977), 355–375.