Article (Scientific journals)
Time delay lens modelling challenge
Ding, X.; Treu, T.; Birrer, S. et al.
2021In Monthly Notices of the Royal Astronomical Society, 503, p. 1096
Peer Reviewed verified by ORBi
 

Files


Full Text
2021_MNRAS_503_1096_Ding.pdf
Publisher postprint (6.01 MB)
This article has been accepted for publication in MNRAS ©: 2021. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Download

This article has been accepted for publication in MNRAS ©: 2021. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.


All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
gravitational lensing: strong; methods: data analysis; cosmology: observations; Astrophysics - Cosmology and Nongalactic Astrophysics; Astrophysics - Astrophysics of Galaxies; Astrophysics - Instrumentation and Methods for Astrophysics
Abstract :
[en] In recent years, breakthroughs in methods and data have enabled gravitational time delays to emerge as a very powerful tool to measure the Hubble constant H[SUB]0[/SUB]. However, published state-of-the-art analyses require of order 1 yr of expert investigator time and up to a million hours of computing time per system. Furthermore, as precision improves, it is crucial to identify and mitigate systematic uncertainties. With this time delay lens modelling challenge, we aim to assess the level of precision and accuracy of the modelling techniques that are currently fast enough to handle of order 50 lenses, via the blind analysis of simulated data sets. The results in Rungs 1 and 2 show that methods that use only the point source positions tend to have lower precision ( $10\!-\!20{{\ \rm per\ cent}}$ ) while remaining accurate. In Rung 2, the methods that exploit the full information of the imaging and kinematic data sets can recover H[SUB]0[/SUB] within the target accuracy (|A| < 2 per cent) and precision (<6 per cent per system), even in the presence of a poorly known point spread function and complex source morphology. A post-unblinding analysis of Rung 3 showed the numerical precision of the ray-traced cosmological simulations to be insufficient to test lens modelling methodology at the percent level, making the results difficult to interpret. A new challenge with improved simulations is needed to make further progress in the investigation of systematic uncertainties. For completeness, we present the Rung 3 results in an appendix and use them to discuss various approaches to mitigating against similar subtle data generation effects in future blind challenges.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Ding, X.;  Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547, USA ; Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
Treu, T.;  Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547, USA
Birrer, S.;  Kavli Institute for Particle Astrophysics and Cosmology and Department of Physics, Stanford University, Stanford, CA 94305, USA
Chen, G. C.-F.;  Department of Physics, University of California, Davis, CA 95616, USA
Coles, J.;  Physik-Department T38, Technische Universität München, James-Franck-Str 1, D-85748 Garching, Germany
Denzel, P.;  Institute for Computational Science, University of Zurich, CH-8057 Zurich, Switzerland ; Physics Institute, University of Zurich, CH-8057 Zurich, Switzerland
Frigo, M.;  Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, D-85740 Garching, Germany
Galan, A.;  Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland
Marshall, P. J.;  Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94035, USA
Millon, M.;  Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland
More, A.;  Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
Shajib, A. J.;  Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547, USA ; Department of Astronomy & Astrophysics, University of Chicago, Chicago, IL 606374, USA
Sluse, Dominique  ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Origines Cosmologiques et Astrophysiques (OrCa)
Tak, H.;  International CHASC Astrostatistics Collaboration, Harvard University, Cambridge, MA 02138, USA ; Center for Astrostatistics, The Pennsylvania State University, University Park, PA 16802, USA ; Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA ; Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA ; Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA 16802, USA
Xu, D.;  Department of Astronomy, Tsinghua University, Beijing 100084, China
Auger, M. W.;  Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
Bonvin, V.;  Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland
Chand, H.;  Department of Astronomy, Aryabhatta Research Institute of observational sciencES (ARIES), Nainital 263002, India ; Department of Physics and Astronomical Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
Courbin, F.;  Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland
Despali, G.;  Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str 2, D-69120 Heidelberg, Germany
Fassnacht, C. D.;  Department of Physics, University of California, Davis, CA 95616, USA
Gilman, D.;  Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547, USA
Hilbert, S.;  Exzellenzcluster Universe, Boltzmannstr 2, D-85748 Garching, Germany ; Ludwig-Maximilians-Universität, Universitäts-Sternwarte, Scheinerstr 1, D-81679 München, Germany
Kumar, S. R.;  Department of Astronomy, Aryabhatta Research Institute of observational sciencES (ARIES), Nainital 263002, India
Lin, J. Y.-Y.;  Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA
Park, J. W.;  Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94035, USA
Saha, P.;  Physics Institute, University of Zurich, CH-8057 Zurich, Switzerland ; Institute for Computational Science, University of Zurich, CH-8057 Zurich, Switzerland
Vegetti, S.;  Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, D-85740 Garching, Germany
Van de Vyvere, Lyne  ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Origines Cosmologiques et Astrophysiques (OrCa)
Williams, L. L. R.;  School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455, USA)
More authors (20 more) Less
Language :
English
Title :
Time delay lens modelling challenge
Publication date :
01 May 2021
Journal title :
Monthly Notices of the Royal Astronomical Society
ISSN :
0035-8711
eISSN :
1365-2966
Publisher :
Oxford University Press, Oxford, United Kingdom
Volume :
503
Pages :
1096
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 787886 - COSMICLENS - Cosmology with Strong Gravitational Lensing
Funders :
CE - Commission Européenne [BE]
Available on ORBi :
since 21 April 2021

Statistics


Number of views
49 (3 by ULiège)
Number of downloads
67 (2 by ULiège)

Scopus citations®
 
29
Scopus citations®
without self-citations
12
OpenCitations
 
17

Bibliography


Similar publications



Contact ORBi