Vita, G.; Department of Industrial Engineering – DIEF, School of Engineering, University of Florence, Italy, Department of Civil Engineering, School of Engineering, University of Birmingham, United Kingdom
Hemida, H.; Department of Civil Engineering, School of Engineering, University of Birmingham, United Kingdom
Andrianne, Thomas ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale
Baniotopoulos, C.; Department of Civil Engineering, School of Engineering, University of Birmingham, United Kingdom
Language :
English
Title :
The effect of the integral length scale of turbulence on a wind turbine aerofoil
Publication date :
2020
Journal title :
Journal of Wind Engineering and Industrial Aerodynamics
ISSN :
0167-6105
eISSN :
1872-8197
Publisher :
Elsevier B.V.
Volume :
204
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 643167 - AEOLUS4FUTURE - Efficient harvesting of the wind energy
Al-Abadi, A., et al. Turbulence impact on wind turbines: experimental investigations on a wind turbine model. J. Phys.: Con Series. IOP Pub, 753(3), 2016, 10.1088/1742-6596/753/3/032046 032046.
Albers, A., et al. Influence of meteorological variables on measured wind turbine power curves. Milan, Italy Proceedings of the European Wind Energy Conference (EWEC), 2007 Available at: https://www.researchgate.net/publication/229015286. (Accessed 8 May 2020)
Amandolèse, X., Széchényi, E., Experimental study of the effect of turbulence on a section model blade oscillating in stall. Wind Energy 7:4 (2004), 267–282, 10.1002/we.137.
Arnfield, a.J., Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 23:1 (2003), 1–26, 10.1002/joc.859.
Bak, C., Sensitivity of key parameters in aerodynamic wind turbine rotor design on power and energy performance. J. Phys. Conf. IOP Publishing, 75(1), 2007, 10.1088/1742-6596/75/1/012008 012008.
Balduzzi, F., et al. Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building. Appl. Energy 97 (2012), 921–929, 10.1016/j.apenergy.2011.12.008 Elsevier Ltd.
Battisti, L., et al. Small wind turbine effectiveness in the urban environment. Renew. Energy 129 (2018), 102–113, 10.1016/j.renene.2018.05.062 Elsevier Ltd.
Bearman, P.W., Morel, T., Effect of free stream turbulence on the flow around bluff bodies. Prog. Aerospace Sci. Pergamon 20:2–3 (1983), 97–123, 10.1016/0376-0421(83)90002-7.
Buresti, G., Elements of Fluid Dynamics. 2012, Imperial College Press, London Available at: https://books.google.com/books?id=N6TNpwAACAAJ&pgis=1. (Accessed 27 January 2016)
Carbó Molina, A., Bartoli, G., De Troyer, T., Wind tunnel testing of small vertical-Axis wind turbines in turbulent flows. Procedia Engineering, X International Conference on Structural Dynamics, EURODYN 2017, 2017, Elsevier, Rome, 3176–3181, 10.1016/j.proeng.2017.09.518.
Cebeci, T., Mosinskis, G.J., Smith, A.M.O., Calculation of separation points in incompressible turbulent flows. J. Aircraft 9:9 (1972), 618–624, 10.2514/3.59049.
Conan, B., Wind resource accessment in complex terrain by wind tunnel modelling. Orléans, 2012 Available at: http://www.theses.fr/2012ORLE2067. (Accessed 31 January 2018)
Devenport, W., et al. Aeroacoustic Testing of Wind Turbine Airfoils: February 20, 2004 - February 19, 2008. Blacksburg, Virginia. 2010 Available at: http://www.osti.gov/bridge. (Accessed 5 April 2019)
Devinant, P., Laverne, T., Hureau, J., Experimental study of wind-turbine airfoil aerodynamics in high turbulence. J. Wind Eng. Ind. Aerod. 90:6 (2002), 689–707, 10.1016/S0167-6105(02)00162-9.
Emeis, S., Current issues in wind energy meteorology. Meteorol. Appl. 21:4 (2014), 803–819, 10.1002/met.1472.
Evans, S.P., et al. The suitability of the IEC 61400-2 wind model for small wind turbines operating in the built environment. Renew. Energy Environ. Sustain., 2, 2017, 31, 10.1051/rees/2017022 D. Goodfield.
Frandsen, S.T., Turbulence and Turbulence-Generated Structural Loading in Wind Turbine Clusters. 2007.
Freudenreich, K., et al. Reynolds number and roughness effects on thick airfoils for wind turbines. Wind Eng. 28:5 (2004), 529–546, 10.1260/0309524043028109 SAGE PublicationsSage UK: London, England.
Haan, F.L., Kareem, A., Szewczyk, A.A., The effects of turbulence on the pressure distribution around a rectangular prism. J. Wind Eng. Ind. Aerod. 77:78 (1998), 381–392, 10.1016/S0167-6105(98)00158-5.
Hand, M., Simms, D., Fingersh, L., Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns. Available at: https://www.researchgate.net/profile/Scott_Larwood2/publication/255198729_Unsteady_Aerodynamics_Experiment_Phase_VI_Wind_Tunnel_Test_Configurations_and_Available_Data_Campaigns/links/5457d2540cf26d5090ab52a1.pdf, 2001. (Accessed 30 May 2016)
Hansen, M.H., Aeroelastic instability problems for wind turbines. Wind Energy 10:6 (2007), 551–577, 10.1002/we.242.
Hansen, M.O.L., et al. State of the art in wind turbine aerodynamics and aeroelasticity. Prog. Aero. Sci. 42:4 (2006), 285–330, 10.1016/j.paerosci.2006.10.002.
Hau, E., Wind Turbines: Fundamentals, Technologies, Application, Economics. third ed, 2013, Springer-Verlag, Berlin Heidelberg, 10.1007/3-540-29284-5.
Hoffmann, J.A., Effects of freestream turbulence on the performance characteristics of an airfoil. AIAA J. 29:9 (1991), 1353–1354, 10.2514/3.10745.
Huang, R.F., Lee, H.W., Effects of freestream turbulence on wing-surface flow and aerodynamic performance. J. Aircraft 36:6 (1999), 965–972, 10.2514/2.2537 AIAA.
IEC 61400-2:2013. Wind turbines - Part 2: small wind turbines. Available at: https://webstore.iec.ch/publication/5433, 2013. (Accessed 18 November 2019)
Ishugah, T.F., et al. Advances in wind energy resource exploitation in urban environment: a review. Renew. Sustain. Energy Rev. 37 (2014), 613–626, 10.1016/J.RSER.2014.05.053 Pergamon.
Kc, A., Whale, J., Urmee, T., Urban wind conditions and small wind turbines in the built environment: a review. Renew. Energy 131 (2019), 268–283, 10.1016/J.RENENE.2018.07.050 Pergamon.
Kelly, M., et al. Probabilistic meteorological characterization for turbine loads. J. Phys. Conf., 524(1), 2014, 012076, 10.1088/1742-6596/524/1/012076 IOP Publishing.
Kistler, A.L., Vrebalovich, T., Grid turbulence at large Reynolds numbers. J. Fluid Mech. Cambridge University Press, 26(01), 2006, 37, 10.1017/S0022112066001071.
Kosasih, B., Saleh Hudin, H., Influence of inflow turbulence intensity on the performance of bare and diffuser-augmented micro wind turbine model. Renew. Energy 87 (2016), 154–167, 10.1016/j.renene.2015.10.013.
van Kuik, G.A.M., et al. ‘Long-term research challenges in wind energy – a research agenda by the European Academy of Wind Energy’. Wind Energy Sci 1:1 (2016), 1–39, 10.5194/wes-1-1-2016.
Li, Q., et al. Effect of turbulent inflows on airfoil performance for a Horizontal Axis Wind Turbine at low Reynolds numbers (Part II: Dynamic pressure measurement). Energy 112 (2016), 574–587, 10.1016/j.energy.2016.06.126.
Lindeboom, R.C.J., Determination of unsteady loads on a DU96W180 airfoil with actuated flap using Particle Image Velocimetry. Available at: https://repository.tudelft.nl/islandora/object/uuid:f3bb4ee0-0bd6-402a-858f-45160d5ef1dc?collection=education, 2010. (Accessed 5 April 2019)
Lyon, C.A., Selig, M.S., Broeren, A.P., Boundary layer trips on airfoils at low Reynolds numbers. 35th Aerospace Sciences Meeting and Exhibit, 1997, American Institute of Aeronautics and Astronautics Inc, AIAA, 10.2514/6.1997-511.
Maldonado, V., et al. The role of free stream turbulence with large integral scale on the aerodynamic performance of an experimental low Reynolds number S809 wind turbine blade. J. Wind Eng. Ind. Aerod. 142 (2015), 246–257, 10.1016/j.jweia.2015.03.010 Elsevier.
Mary, I., Sagaut, P., Large eddy simulation of flow around an airfoil near stall. AIAA J. 40:6 (2002), 1139–1145, 10.2514/2.1763.
Matyushenko, A.A., Kotov, E.V., Garbaruk, A.V., Calculations of flow around airfoils using two-dimensional RANS: an analysis of the reduction in accuracy. St. Petersburg Polytech. Univ. J: Phys. Mathemat 3:1 (2017), 15–21, 10.1016/J.SPJPM.2017.03.004 No longer published by Elsevier.
Micallef, D., van Bussel, G., A review of urban wind energy research: aerodynamics and other challenges. Energies, 11(9), 2018, 2204, 10.3390/en11092204 Multidisciplinary Digital Publishing Institute.
Milan, P., Wächter, M., Peinke, J., ‘Turbulent character of wind energy.’, Physical review letters. Am Phys Soc, 110(13), 2013, 138701, 10.1103/PhysRevLett.110.138701.
Miley, S., A catalog of low Reynolds number airfoil data for wind turbine applications. Available at: http://wind.nrel.gov/public/library/3387.pdf, 1982. (Accessed 8 June 2016)
Mouzakis, F., Morfiadakis, E., Dellaportas, P., Fatigue loading parameter identification of a wind turbine operating in complex terrain. J. Wind Eng. Ind. Aerod. 82:1 (1999), 69–88, 10.1016/S0167-6105(98)00211-6.
Mücke, T., Kleinhans, D., Peinke, J., Atmospheric turbulence and its influence on the alternating loads on wind turbines. Wind Energy 14:2 (2011), 301–316, 10.1002/We.422.
Mueller, T.J., et al. The influence of free-stream disturbances on low Reynolds number airfoil experiments. Exp. Fluid 1 (1983), 3–14, 10.1007/BF00282261.
Nakamura, Y., Bluff-body aerodynamics and turbulence. J. Wind Eng. Ind. Aerod. 49:1–3 (1993), 65–78, 10.1016/0167-6105(93)90006-A.
Nakamura, Y., Ohya, Y., The effects of turbulence on the mean flow past square rods. J. Fluid Mech., 137(1), 2006, 331, 10.1017/S0022112083002438 Cambridge University Press.
Nakamura, Y., Ohya, Y., Ozono, S., The effects of turbulence on bluff-body mean flow. J. Wind Eng. Ind. Aerod. 28:1 (1988), 251–259, 10.1016/0167-6105(88)90121-3 Elsevier.
Nakamura, Y., Ohya, Y., Ozono, S., The effects of turbulence on bluff-body mean flow. Adv. Wind, 2012 Available at: https://books.google.co.uk/books?hl=it&lr=&id=-Q6RfEiLKVAC&oi=fnd&pg=PA251&ots=bPGaZKAGK0&sig=PwxVCOlBloBI0EXkrWEpUrzQCeE. (Accessed 7 June 2016)
Ohya, Y., Drag of circular cylinders in the atmospheric turbulence. Fluid Dynam. Res. 34:2 (2004), 135–144, 10.1016/j.fluiddyn.2003.10.002.
Pagnini, L.C., Burlando, M., Repetto, M.P., Experimental power curve of small-size wind turbines in turbulent urban environment. Appl. Energy 154 (2015), 112–121, 10.1016/j.apenergy.2015.04.117 Elsevier Ltd.
Pagnini, L., Piccardo, G., Repetto, M.P., Full scale behavior of a small size vertical axis wind turbine. Renew. Energy 127 (2018), 41–55, 10.1016/j.renene.2018.04.032 Elsevier Ltd.
Rezaeiha, A., Montazeri, H., Blocken, B., Towards optimal aerodynamic design of vertical axis wind turbines: impact of solidity and number of blades. Energy 165 (2018), 1129–1148, 10.1016/J.ENERGY.2018.09.192 Pergamon.
Sareen, A., Sapre, C.A., Selig, M.S., Effects of leading-edge protection tape on wind turbine blade performance. Wind Eng. 36:5 (2012), 525–534 Available at: https://m-selig.ae.illinois.edu/pubs/SareenSapreSelig-2012-WindEngineering-WPT.pdf. (Accessed 5 April 2019)
Šarkić Glumac, A., Hemida, H., Höffer, R., Wind energy potential above a high-rise building influenced by neighboring buildings: an experimental investigation. J. Wind Eng. Ind. Aerod. 175 (2018), 32–42, 10.1016/J.JWEIA.2018.01.022 Elsevier.
Seddighi, M., Soltani, M., The influence of free stream turbulence intensity on the unsteady behavior of a wind turbine blade section. 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007, American Institute of Aeronautics and Astronautics, Reston, Virigina, 10.2514/6.2007-630.
Sicot, C., Devinant, P., et al. Experimental study of the effect of turbulence on horizontal axis wind turbine aerodynamics. Wind Energy 9:4 (2006), 361–370, 10.1002/we.184 John Wiley & Sons, Ltd.
Sicot, C., Aubrun, S., et al. Unsteady characteristics of the static stall of an airfoil subjected to freestream turbulence level up to 16%. Exp. Fluid 41:4 (2006), 641–648, 10.1007/s00348-006-0187-9.
Sicot, C., et al. Rotational and turbulence effects on a wind turbine blade. Investigation of the stall mechanisms. J. Wind Eng. Ind. Aerod. 96:8–9 (2008), 1320–1331, 10.1016/j.jweia.2008.01.013.
Sørensen, J.N., Aerodynamic aspects of wind energy conversion. Annu. Rev. Fluid Mech. 43 (2011), 427–448, 10.1146/annurev-fluid-122109-160801.
St Martin, C.M., et al. Wind Turbine Power Production and Annual Energy Production Depend on Atmospheric Stability and Turbulence. 2016, 10.5194/wes-2016-21.
Stathopoulos, T., et al. Urban wind energy: some views on potential and challenges. J. Wind Eng. Ind. Aerod. Elsevier 179 (2018), 146–157, 10.1016/J.JWEIA.2018.05.018.
Stratford, B.S., The prediction of separation of the turbulent boundary layer. J. Fluid Mech. Cambridge University Press, 5(01), 1959, 1, 10.1017/S0022112059000015.
Sunderland, K., et al. Small wind turbines in turbulent (urban) environments: a consideration of normal and Weibull distributions for power prediction. J. Wind Eng. Ind. Aerod. 121 (2013), 70–81, 10.1016/j.jweia.2013.08.001 Elsevier.
Suryadi, A., Herr, M., Wall pressure spectra on a DU96-W-180 profile from low to pre-stall angles of attack. 21st AIAA/CEAS Aeroacoustics Conference, 2015, American Institute of Aeronautics and Astronautics, Reston, Virginia, 10.2514/6.2015-2688.
Swalwell, K., Sheridan, J., The effect of turbulence intensity on stall of the NACA 0021 aerofoil. 14th Australasian, 2001 Available at: http://people.eng.unimelb.edu.au/imarusic/proceedings/14/FM010235.PDF. (Accessed 7 October 2016)
Swalwell, K., Sheridan, J., Melbourne, W., The effect of turbulence intensity on performance of a NACA 4421 airfoil section. 42nd AIAA Aerospace, 2004 Available at: http://arc.aiaa.org/doi/pdf/10.2514/6.2004-665. (Accessed 8 June 2016)
Tabrizi, A.B., et al. Extent to which international wind turbine design standard, IEC61400-2 is valid for a rooftop wind installation. J. Wind Eng. Ind. Aerod. 139 (2015), 50–61, 10.1016/j.jweia.2015.01.006 Elsevier.
Tang, H., et al. ‘Wake effect of a horizontal Axis wind turbine on the performance of a downstream turbine’, energies. MDPI AG, 12(12), 2019, 2395, 10.3390/en12122395.
Tangler, J., The nebulous art of using wind-tunnel airfoil data for predicting rotor performance. ASME 2002 Wind Energy, 2002 Available at: http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1572110. (Accessed 30 May 2016)
Timmer, W.A., Aerodynamic characteristics of wind turbine blade airfoils at high angles-of-attack. TORQUE 2010: the Science of Making Torque from Wind, 2010, 71–78, 10.1533/9780857097286.2.210.
Timmer, W.A., van Rooij, R.P.J.O.M., ‘Summary of the Delft university wind turbine dedicated airfoils’. ASME 2003 Wind Energy Symposium, 2003, ASME, 11–21, 10.1115/WIND2003-352.
Toft, H.S., et al. Uncertainty in wind climate parameters and their influence on wind turbine fatigue loads. 90, 2016, Renewable Energy, 352–361, 10.1016/j.renene.2016.01.010.
Toja-Silva, F., et al. An empirical-heuristic optimization of the building-roof geometry for urban wind energy exploitation on high-rise buildings. Appl. Energy 164 (2016), 769–794, 10.1016/j.apenergy.2015.11.095 Elsevier Ltd.
Toja-Silva, F., et al. A review of computational fluid dynamics (CFD) simulations of the wind flow around buildings for urban wind energy exploitation. J. Wind Eng. Ind. Aerod. 180 (2018), 66–87, 10.1016/J.JWEIA.2018.07.010 Elsevier.
Traub, L.W., Experimental investigation of the effect of trip strips at low Reynolds number. J. Aircraft 48:5 (2011), 1776–1784, 10.2514/1.C031375.
Vermeer, L.J., Sørensen, J.N., Crespo, A., Wind turbine wake aerodynamics. Prog. Aero. Sci. 39:6–7 (2003), 467–510, 10.1016/S0376-0421(03)00078-2.
Vita, G., et al. Generating atmospheric turbulence using passive grids in an expansion test section of a wind tunnel. J. Wind Eng. Ind. Aerod. 178 (2018), 91–104, 10.1016/j.jweia.2018.02.007 Elsevier.
Wagner, R., Accounting for the Speed Shear in Wind Turbine Power Performance Measurement. 2010, Risø National Laboratory.
Walker, S.L., ‘Building mounted wind turbines and their suitability for the urban scale—a review of methods of estimating urban wind resource’. Energy Build. 43:8 (2011), 1852–1862, 10.1016/j.enbuild.2011.03.032.
Wang, S., et al. Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers. Phys. Fluids, 26(11), 2014, 115107, 10.1063/1.4901969 AIP Publishing.
Zdravkovich, M.M., Flow around circular cylinders, flow around circular cylinders. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-0030744960&partnerID=tZOtx3y1, 1997.