Assessment of Plasmodium falciparum anti-malarial drug resistance markers in pfk13-propeller, pfcrt and pfmdr1 genes in isolates from treatment failure patients in Democratic Republic of Congo, 2018-2019.
Yobi, Doudou M.; Kayiba, Nadine K.; Mvumbi, Dieudonné M.et al.
Anti-malarial; Democratic Republic of Congo; Failure; Markers; Molecular; Resistance; Treatment
Abstract :
[en] BACKGROUND: The national policy for malaria treatment of the Democratic Republic of Congo recommends two first-line artemisinin-based combinations for the treatment of uncomplicated malaria: artesunate-amodiaquine and artemether-lumefantrine. This study investigated the presence of markers associated with resistance to the current first-line artemisinin-based combination therapy (ACT) in isolates of Plasmodium falciparum from treatment failure patients in the Democratic Republic of Congo. METHODS: From November 2018 to November 2019, dried blood spots were taken from patients returning to health centres for fever within 28 days after an initial malaria treatment in six sentinel sites of the National Malaria Control Programme across Democratic Republic of Congo. The new episode of malaria was first detected by a rapid diagnostic test and then confirmed by a real-time PCR assay to define treatment failure. Fragments of interest in pfk13 and pfcrt genes were amplified by conventional PCR before sequencing and the Pfmdr1 gene copy number was determined by a TaqMan real-time PCR assay. RESULTS: Out of 474 enrolled patients, 364 (76.8%) were confirmed positive by PCR for a new episode of P. falciparum malaria, thus considered as treatment failure. Of the 325 P. falciparum isolates obtained from 364 P. falciparum-positive patients and successfully sequenced in the pfk13-propeller gene, 7 (2.2%) isolates carried non-synonymous mutations, among which 3 have been previously reported (N498I, N554K and A557S) and 4 had not yet been reported (F506L, E507V, D516E and G538S). Of the 335 isolates successfully sequenced in the pfcrt gene, 139 (41.5%) harboured the K76T mutation known to be associated with chloroquine resistance. The SVMNT haplotype associated with resistance to amodiaquine was not found. None of the isolates carried an increased copy number of the pfmdr1 gene among the 322 P. falciparum isolates successfully analysed. CONCLUSION: No molecular markers currently known to be associated with resistance to the first-line ACT in use were detected in isolates of P. falciparum from treatment failure patients. Regular monitoring through in vivo drug efficacy and molecular studies must continue to ensure the effectiveness of malaria treatment in Democratic Republic of Congo.
Disciplines :
Microbiology
Author, co-author :
Yobi, Doudou M.
Kayiba, Nadine K.
Mvumbi, Dieudonné M.
BOREUX, Raphaël ; Centre Hospitalier Universitaire de Liège - CHU > Unilab > Laboratoire biologie moléculaire
Kabututu, Pius Z.
Situakibanza, Hippolyte N. T.
Umesumbu, Solange E.
De Mol, Patrick ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Département des sciences biomédicales et précliniques
Speybroeck, Niko
Mvumbi, Georges L.
Hayette, Marie-Pierre ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Bact., mycologie, parasitologie, virologie, microbio.
Language :
English
Title :
Assessment of Plasmodium falciparum anti-malarial drug resistance markers in pfk13-propeller, pfcrt and pfmdr1 genes in isolates from treatment failure patients in Democratic Republic of Congo, 2018-2019.
Alternative titles :
[fr] Évaluation des marqueurs de résistance aux médicaments antipaludiques de Plasmodium falciparum dans les gènes pfk13-propeller, pfcrt et pfmdr1 dans des isolats provenant de patients en échec de traitement en République démocratique du Congo, 2018-2019
Publication date :
2021
Journal title :
Malaria Journal
eISSN :
1475-2875
Publisher :
BioMed Central, United Kingdom
Volume :
20
Issue :
1
Pages :
144
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
ARES CCD - Académie de Recherche et d'Enseignement Supérieur. Coopération au Développement
USAID. President’s Malaria Initiative: Democratic Republic of the Congo - Malaria Operational Plan FY 2018. https://www.pmi.gov/docs/default-source/default-document-library/malaria-operational-plans/fy-2018/fy-2018-democratic-republic-of-the-congo-malaria-operational-plan.pdf?sfvrsn=5. Accessed 12 May 2020.
WHO. Methods for surveillance of antimalarial drug efficacy. Geneva: World Health Organization; 2009.
Vestergaard LS, Ringwald P. Responding to the challenge of antimalarial drug resistance by routine monitoring to update national malaria treatment policies. Am J Trop Med Hyg. 2007;77:153–9. DOI: 10.4269/ajtmh.2007.77.153
Cui L, Mharakurwa S, Ndiaye D, Rathod PK, Rosenthal PJ. Antimalarial drug resistance: literature review and activities and findings of the ICEMR Network. Am J Trop Med Hyg. 2015;93:57–68. DOI: 10.4269/ajtmh.15-0007
Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23. DOI: 10.1056/NEJMoa1314981
Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois A-C, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5. DOI: 10.1038/nature12876
WHO. Status report on artemisinin resistance and ACT efficacy. Geneva, World Health Organization/Global Malaria programme; August 2018. https://www.who.int/malaria/publications/atoz/artemisinin-resistanceaugust2018/en/. Accessed 20 April 2019.
Uwimana A, Legrand E, Stokes BH, Ndikumana J-LM, Warsame M, Umulisa N, et al. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat Med. 2020;10:1603–8.
Tacoli C, Gai P, Bayingana C, Sifft K, Geus D, Ndoli J, et al. Artemisinin resistance-associated K13 polymorphisms of Plasmodium falciparum in Southern Rwanda, 2010–2015. Am J Trop Med Hyg. 2016;95:1090–3. DOI: 10.4269/ajtmh.16-0483
Ikeda M, Kaneko M, Tachibana SI, Balikagala B, Sakurai-Yatsushiro M, Yatsushiro S, et al. Artemisinin-resistant Plasmodium falciparum with high survival rates, Uganda, 2014–2016. Emerg Infect Dis. 2018;24:718–26. DOI: 10.3201/eid2404.170141
Kayiba NK, Yobi DM, Tshibangu-Kabamba E, Tuan VP, Yamaoka Y, Devleesschauwer B, et al. Spatial and molecular mapping of Pfkelch13 gene polymorphism in Africa in the era of emerging Plasmodium falciparum resistance to artemisinin: a systematic review. Lancet Infect Dis. 2020;S1473-3099(20)30493-X. (online ahead of print).
Ecker A, Lehane AM, Clain J, Fidock DA. PfCRT and its role in antimalarial drug resistance. Trends Parasitol. 2012;28:504–14. DOI: 10.1016/j.pt.2012.08.002
Beshir K, Sutherland CJ, Merinopoulos I, Durrani N, Leslie T, Rowland M, et al. Amodiaquine resistance in Plasmodium falciparum malaria in Afghanistan is associated with the pfcrt SVMNT allele at codons 72 to 76. Antimicrob Agents Chemother. 2010;54:3714–6. DOI: 10.1128/AAC.00358-10
Price RN, Uhlemann A-C, Van Vugt M, Brockman A, Hutagalung R, Nair S, et al. Molecular and pharmacological determinants of the therapeutic response to artemether-lumefantrine in multidrug-resistant Plasmodium falciparum malaria. Clin Infect Dis. 2006;42:1570–7. DOI: 10.1086/503423
WHO. Guidelines for the treatment of malaria 3rd Edn. Geneva, World Health Organization 2015. https://extranet.who.int/iris/restricted/handle/10665/162441. Accessed 15 July 2020.
WHO. Tools for monitoring antimalarial drug efficacy. Geneva, World Health Organization. https://www.who.int/malaria/areas/drug_resistance/efficacy-monitoring-tools/en/. Accessed 15 June 2020.
Cnops L, Jacobs J, Esbroeck MV. Validation of a four-primer real-time PCR as a diagnostic tool for single and mixed Plasmodium infections. Clin Microbiol Infect. 2011;17:1101–7. DOI: 10.1111/j.1469-0691.2010.03344.x
Yobi DM, Kayiba NK, Mvumbi DM, Boreux R, Bontems S, Kabututu PZ, et al. The lack of K13-propeller mutations associated with artemisinin resistance in Plasmodium falciparum in Democratic Republic of Congo (DRC). PLoS ONE. 2020;15:e0237791. DOI: 10.1371/journal.pone.0237791
Mvumbi DM, Boreux R, Sacheli R, Lelo M, Lengu B, Nani-Tuma S, et al. Assessment of pfcrt 72–76 haplotypes eight years after chloroquine withdrawal in Kinshasa, Democratic Republic of Congo. Malar J. 2013;12:459. DOI: 10.1186/1475-2875-12-459
Price RN, Uhlemann A-C, Brockman A, McGready R, Ashley E, Phaipun L, et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet. 2004;364:438–47. DOI: 10.1016/S0140-6736(04)16767-6
De Laurent ZR, Chebon LJ, Ingasia LA, Akala HM, Andagalu B, Ochola-Oyier LI, et al. Polymorphisms in the K13 gene in Plasmodium falciparum from different malaria transmission areas of Kenya. Am J Trop Med Hyg. 2018;98:1360–6. DOI: 10.4269/ajtmh.17-0505
Ménard D, Khim N, Beghain J, Adegnika AA, ShafiulAlam M, Amodu O, et al. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med. 2016;374:2453–64. DOI: 10.1056/NEJMoa1513137
WWARN K13 Genotype-Phenotype Study Group. Association of mutations in the Plasmodium falciparum (Pf3D7_1343700) with parasite clearance rates after artemisinin-based treatments – a WWARN individual patient data meta-analysis. BMC Med. 2019;17:1. DOI: 10.1186/s12916-018-1207-3
Kamau E, Campino S, Amenga-Etego L, Drury E, Ishengoma D, Johnson K, et al. K13 propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa. J Infect Dis. 2015;211:1352–5.
Mvumbi DM, Bobanga TL, Kayembe J-MN, Mvumbi GL, Situakibanza HN-T, Benoit-Vical F, et al. Molecular surveillance of Plasmodium falciparum resistance to artemisinin-based combination therapies in the Democratic Republic of Congo. PLoS ONE. 2017;12:e0179142. DOI: 10.1371/journal.pone.0179142
Yobi DM, Kayiba NK, Mvumbi DM, Boreux R, Kabututu PZ, Situakibanza HNT, et al. Molecular surveillance of anti-malarial drug resistance in Democratic Republic of Congo: high variability of chloroquinoresistance and lack of amodiaquinoresistance. Malar J. 2020;19:121. DOI: 10.1186/s12936-020-03192-x
Frank M, Lehners N, Mayengue PI, Gabor J, Dal-Bianco M, Kombila DU, et al. A thirteen-year analysis of Plasmodium falciparum populations reveals high conservation of the mutant pfcrt haplotype despite the withdrawal of chloroquine from national treatment guidelines in Gabon. Malar J. 2011;10:304. DOI: 10.1186/1475-2875-10-304
Verity R, Aydemir O, Brazeau NF, Watson OJ, Hathaway NJ, Mwandagalirwa MK, et al. The impact of antimalarial resistance on the genetic structure of Plasmodium falciparum in the DRC. Nat Commun. 2020;11:2107. DOI: 10.1038/s41467-020-15779-8
Meshnick SR, Janko M, Tshefu AK, Taylor SM, Emch M, Antonia AL. A cross-sectional survey of Plasmodium falciparum pfcrt mutant haplotypes in the Democratic Republic of Congo. Am J Trop Med Hyg. 2014;90:1094–7. DOI: 10.4269/ajtmh.13-0378
Alifrangis M, Dalgaard MB, Lusingu JP, Vestergaard LS, Staalsoe T, Jensen ATR, et al. Occurrence of the Southeast Asian/South American SVMNT haplotype of the chloroquine resistance transporter gene in Plasmodium falciparum in Tanzania. J Infect Dis. 2006;193:1738–41. DOI: 10.1086/504269
Gama BE, Pereira-Carvalho GA, Lutucuta Kosi FJ, Almeida de Oliveira NK, Fortes F, Rosenthal PJ, et al. Plasmodium falciparum isolates from Angola show the SVMNT haplotype in the pfcrt gene. Malar J. 2010;9:174. DOI: 10.1186/1475-2875-9-174
Menard S, Morlais I, Tahar R, Sayang C, Mayengue P, Iriart X, et al. Molecular monitoring of Plasmodium falciparum drug susceptibility at the time of the introduction of artemisinin-based combination therapy in Yaoundé, Cameroon: Implications for the future. Malar J. 2012;11:113. DOI: 10.1186/1475-2875-11-113
Davlantes E, Dimbu PR, Ferreira CM, Florinda Joao M, Pode D, Félix J, et al. Efficacy and safety of artemether–lumefantrine, artesunate–amodiaquine, and dihydroartemisinin–piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria in three provinces in Angola, 2017. Malar J. 2018;17:144. DOI: 10.1186/s12936-018-2290-9
Witkowski B, Nicolau M-L, Soh PN, Iriart X, Menard S, Alvarez M, et al. Plasmodium falciparum isolates with increased pfmdr1 copy number circulate in West Africa. Antimicrob Agents Chemother. 2010;54:3049–51. DOI: 10.1128/AAC.00209-10
Nguetse CN, Adegnika AA, Agbenyega T, Ogutu BR, Krishna S, Kremsner PG, et al. Molecular markers of anti-malarial drug resistance in Central, West and East African children with severe malaria. Malar J. 2017;16:217. DOI: 10.1186/s12936-017-1868-y
Kyabayinze DJ, Tibenderana JK, Odong GW, Rwakimari JB, Counihan H. Operational accuracy and comparative persistent antigenicity of HRP2 rapid diagnostic tests for Plasmodium falciparum malaria in a hyperendemic region of Uganda. Malar J. 2008;7:221. DOI: 10.1186/1475-2875-7-221
Grandesso F, Nabasumba C, Nyehangane D, Page A-L, Bastard M, De Smet M, et al. Performance and time to become negative after treatment of three malaria rapid diagnostic tests in low and high malaria transmission settings. Malar J. 2016;15:496. DOI: 10.1186/s12936-016-1529-6