[en] We report on measurements of the electrical conductivity in both a 2D triangular lattice of metallic beads and in a chain of beads. The voltage/current characteristics are qualitatively similar in both experiments. At low applied current, the voltage is found to increase logarithmically in good agreement with a model of widely distributed resistances in series. At high enough current, the voltage saturates due to the local welding of microcontacts between beads. The frequency dependence of the saturation voltage gives an estimate of the size of these welded microcontacts. The DC value of the saturation voltage ( similar or equal to 0.4 V per contact) gives an indirect measure of the number of welded contact carrying the current within the 2D lattice. Also, a new measurement technique provides a map of the current paths within the 2D lattice of beads. For an isotropic compression of the 2D granular medium, the current paths are localized in few discrete linear paths. This quasi-onedimensional nature of the electrical conductivity thus explains the similarity between the characteristics in the 1D and 2D systems.
Disciplines :
Physique Chimie Science des matériaux & ingénierie
Auteur, co-auteur :
Creyssels, Matthieu; Université de Liège - ULiège > Département de physique > Physique statistique
Dorbolo, Stéphane ; Université de Liège - ULiège > Département de physique > Physique statistique
Merlen, Alexandre
Laroche, Chantal ; Centre Hospitalier Universitaire de Liège - CHU > Gériatrie
Castaing, Bernard
Falcon, Eric
Langue du document :
Anglais
Titre :
Some aspects of electrical conduction in granular systems of various dimensions
R. Garcia-Rojo, H.J. Herrmann, S. McNamara (Editors), Powders and Grains 2005 (Taylor & Francis Group, London, 2005) and references therein.
J.D. Goddard, Proc. R. Soc. London, Ser. A 430, 105 (1990)
B. Gilles, C. Coste, Phys. Rev. Lett. 90, 174302 (2003).
G.K. Batchelor, R.W. O'Brien, Proc. R. Soc. London, Ser. A 355, 313 (1977)
K. Chen, Nature 442, 257 (2006).
R. Holm, Electric Contacts, 4th ed. (Springer Verlag, Berlin, 2000)
E. Branly, C. R. Acad. Sci. Paris 111, 785 (1890) (in French).
E. Falcon, B. Castaing, Am. J. Phys. 73, 302 (2005).
R. Gabillard, L. Raczy, C. R. Acad. Sci. Paris 252, 2845 (1961)
G. Kamarinos, P. Viktorovitch, M. Bulye-Bodin, C. R. Acad. Sci. Paris 280, 479 (1975) (in French)
S. Dorbolo, M. Ausloos, N. Vandewalle, Phys. Rev. E 67, 040302(R) (2003).
S. Dorbolo, A. Merlen, M. Creyssels, N. Vandewalle, B. Castaing, E. Falcon, submitted to Europhys. Lett. (2007).
D. Vandembroucq, A.C. Boccara, S. Roux, J. Phys. III 7, 303 (1997).
E. Falcon, B. Castaing, M. Creyssels, Eur. Phys. J. B 38, 475 (2004).
D. Bonamy, Europhys. Lett. 51, 614 (2000)
E. Falcon, B. Castaing, C. Laroche, Europhys. Lett. 65, 186 (2004).
M. Creyssels, PhD Thesis, Ecole Normale Supérieure de Lyon, 2006 (in French).
V. Ambegaokar, S. Cochran, J. Kurkijärvi, Phys. Rev. B 8, 3682 (1973).
K.K. Bardhan, Physica A 241, 267 (1997) and references therein
V. Da Costa, Eur. Phys. J. B 13, 297 (2000).
J. Zhang, A. Zavaliangos, Discrete Element Simulation of Transient Thermo electrical Phenomena in Particulate System, in Granular Material-Based Technologies, MRS Fall Meeting 2002, Boston, MA, December 2-6, 2002, edited by S. Sen, M.L. Hunt, A.J. Hurd, Proc. MRS, Vol. 759 (MRS, 2002).
A. Vojta, T. Vojta, J. Phys.: Condens. Matter 8, L461 (1996)
F.P. Bowden, D. Tabor, Proc. Roy. Soc. London, Ser. A 169, 391 (1939)
Marteau & Lemarié, Specialist of beads. Product Catalogue.
See Mag-03MC Fluxgate Sensor Operation Manual in http://www.gmw.com.
P. Dantu, Géotechnique 18, 50 (1968) (in French)
F. Radjai, D.E. Wolf, M. Jean, J.-J. Moreau, Phys. Rev. Lett. 80, 61 (1998).