soundscape; bioacoustics; passive acoustics; propagation; detection distance; drifting system
Abstract :
[en] The ability of different marine species to use acoustic cues to locate reefs is known, but the maximal propagation distance of coral reef sounds is still unknown. Using drifting antennas (made of a floater and an autonomous recorder connected to a hydrophone), six transects were realized from the reef crest up to 10 km in the open ocean on Moorea island (French Polynesia). Benthic invertebrates were the major contributors to the ambient noise, producing acoustic mass phenomena (3.5–5.5 kHz) that could propagate at more than 90 km under flat/calm sea conditions and more than 50 km with an average wind regime of 6 knots. However, fish choruses, with frequencies mainly between 200 and 500 Hz would not propagate at distances greater than 2 km. These distances decreased with increasing wind or ship traffic. Using audiograms of different taxa, we estimated that fish post-larvae and invertebrates likely hear the reef at distances up to 0.5 km and some cetaceans would be able to detect reefs up to more than 17 km. These results are an empirically based validation from an example reef and are essential to understanding the effect of soundscape degradation on different zoological groups.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Raick, Xavier ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Morphologie fonctionnelle et évolutive
Di Iorio, Lucia
Gervaise, Cédric
Lossent, Julie
Lecchini, David
Parmentier, Eric ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Morphologie fonctionnelle et évolutive
Language :
English
Title :
From the reef to the ocean: revealing the acoustic range of the biophony of a coral reef (Moorea Island, French Polynesia)
Publication date :
2021
Journal title :
Journal of Marine Science and Engineering
ISSN :
2077-1312
Publisher :
MDPI AG, Basel, Switzerland
Special issue title :
Passive Acoustics to Study Marine and Freshwater Ecosystems
Volume :
9
Issue :
4
Pages :
420
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique ULiège - Université de Liège
Krause, B. Anatomy of the soundscape: Evolving perspectives. J. Audio Eng. Soc. 2008, 56, 73–80.
Pijanowski, B.C.; Farina, A.; Gage, S.H.; Dumyahn, S.L.; Krause, B.L. What is soundscape ecology? An introduction and overview of an emerging new science. Landsc. Ecol. 2011, 26, 1213–1232. [CrossRef]
Rountree, R.A.; Grant Gilmore, R.; Goudey, C.A.; Hawkins, A.D.; Luczkovich, J.J.; Mann, D.A. Listening to Fish: Applications of Passive Acoustics to Fisheries Science. Fisheries 2006, 31, 433–446. [CrossRef]
Coquereau, L.; Grall, J.; Chauvaud, L.; Gervaise, C.; Clavier, J.; Jolivet, A.; Di Iorio, L. Sound production and associated behaviours of benthic invertebrates from a coastal habitat in the north-east Atlantic. Mar. Biol. 2016, 163, 127. [CrossRef]
Stuart-Smith, R.D.; Bates, A.E.; Lefcheck, J.S.; Duffy, J.E.; Baker, S.C.; Thomson, R.J.; Stuart-Smith, J.F.; Hill, N.A.; Kininmonth, S.J.; Airoldi, L.; et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 2013, 501, 539–542. [CrossRef]
Lobel, P.S.; Kaatz, I.M.; Rice, A.N. Acoustical behavior of coral reef fishes. In Reproduction and Sexuality in Marine Fishes; Cole, K.S., Ed.; University of California Press: Berkeley, CA, USA, 2010; pp. 307–348.
Bertucci, F.; Maratrat, K.; Berthe, C.; Besson, M.; Guerra, A.S.; Raick, X.; Lerouvreur, F.; Lecchini, D.; Parmentier, E. Local sonic activity reveals potential partitioning in a coral reef fish community. Oecologia 2020. [CrossRef]
Au, W.W.L.; Banks, K. The acoustics of the snapping shrimp Synalpheus parneomeris in Kaneohe Bay. J. Acoust. Soc. Am. 1998. [CrossRef]
Staaterman, E.; Rice, A.N.; Mann, D.A.; Paris, C.B. Soundscapes from a Tropical Eastern Pacific reef and a Caribbean Sea reef. Coral Reefs 2013, 32, 553–557. [CrossRef]
Leis, J.; Sweatman, H.; Reader, S. What the Pelagic Stages of Coral Reef Fishes Are Doing out in Blue Water: Daytime Field Observations of Larval Behavioural Capabilities. Mar. Freshw. Res. 1996, 47, 401. [CrossRef]
Stobutzki, I.C.; Bellwood, D.R. Nocturnal orientation to reefs by late pelagic stage coral reef fishes. Coral Reefs 1998, 17, 103–110. [CrossRef]
Myrberg, A.A.; Fuiman, L.A. The Sensory World of Coral Reef Fishes. In Coral Reef Fishes; Elsevier Science: San Diego, CA, USA, 2002; pp. 123–148. [CrossRef]
Mann, D.A.; Casper, B.M.; Boyle, K.S.; Tricas, T.C. On the attraction of larval fishes to reef sounds. Mar. Ecol. Prog. Ser. 2007, 338, 307–310. [CrossRef]
Phillips, B.F.; Penrose, J.D. The Puerulus Stage of the Spiny (Rock) Lobster and its Ability to Locate the Coast; Western Australian Institute of Technology, School of Physics and Geosciences: Perth, Australia, 1985.
Thilges, K.; Potty, G.; Freeman, S.; Freeman, L.; Van Uffelen, L. Measurements and models of acoustic transmission loss on two Hawaiian coral reefs. In Proceedings of the Meetings on Acoustics 178ASA, San Diego, CA, USA, 2–6 December 2019; Volume 39, p. 070005.
Stevick, P.; McConnell, B.; Hammond, P. Patterns of Movement. In Marine Mammal Biology: An Evolutionary Approach; Hoelzel, A.R., Ed.; Blackwell: Malden, MA, USA, 2002; pp. 185–216.
Silva, M.A.; Prieto, R.; Magalhães, S.; Seabra, M.I.; Santos, R.S.; Hammond, P.S. Ranging patterns of bottlenose dolphins living in oceanic waters: Implications for population structure. Mar. Biol. 2008, 156, 179–192. [CrossRef]
van Opzeeland, I.; Slabbekoorn, H. Importance of Underwater Sounds for Migration of Fish and Aquatic Mammals. In Advances in Experimental Medicine and Biology; Springer Nature: London, UK, 2012; Volume 730, pp. 357–359.
Crane, N.L.; Lashkari, K. Sound production of gray whales, Eschrichtius robustus, along their migration route: A new approach to signal analysis. J. Acoust. Soc. Am. 1996, 100, 1878–1886. [CrossRef]
Ann Nichole, A. An Investigation of the Roles of Geomagnetic and Acoustic Cues in Whale Navigation and Orientation, Joint Program in Oceanography/Applied Ocean Science and Engineering; Department of Biology, Massachusetts Institute of Technology: Cambridge, MA, USA; The Woods Hole Oceanographic Institution: Falmouth, MA, USA, 2013.
van den Thillart, G.; Dufour, S.; Rankin, J.C. Spawning Migration of the European Eel; van den Thillart, G., Dufour, S., Rankin, J.C., Eds.; Springer: Dordrecht, The Netherlands, 2009; ISBN 978-1-4020-9094-3.
Leis, J.M.; McCormick, M.I. The Biology, Behavior, and Ecology of the Pelagic, Larval Stage of Coral Reef Fishes. Coral Reef Fishes 2002, 1, 171–199.
Nozais, C.; Duchêne, J.C.; Bhaud, M. Control of position in the water column by the larvae of Poecilochaetus serpens, (Polychaeta): The importance of mucus secretion. J. Exp. Mar. Bio. Ecol. 1997, 210, 91–106. [CrossRef]
Simpson, S.D.; Meekan, M.G.; Jeffs, A.; Montgomery, J.C.; McCauley, R.D. Settlement-stage coral reef fish prefer the higher-frequency invertebrate-generated audible component of reef noise. Anim. Behav. 2008, 75, 1861–1868. [CrossRef]
Barth, P.; Berenshtein, I.; Besson, M.; Roux, N.; Parmentier, E.; Lecchini, D. From the ocean to a reef habitat: How do the larvae of coral reef fishes find their way home? State Art Latest Adv. 2015, 65, 91–100.
Havel, L.N.; Fuiman, L.A. Depth Preference of Settling Red Drum (Sciaenops ocellatus) Larvae in Relation to Benthic Habitat Color and Water-Column Depth. Estuaries Coasts 2017, 40, 573–579. [CrossRef]
Dixson, D.L.; Jones, G.P.; Munday, P.L.; Pratchett, M.S.; Srinivasan, M.; Planes, S.; Thorrold, S.R. Terrestrial chemical cues help coral reef fish larvae locate settlement habitat surrounding islands. Ecol. Evol. 2011, 1, 586–595. [CrossRef]
Dixson, D.L.; Jones, G.P.; Munday, P.L.; Planes, S.; Pratchett, M.S.; Srinivasan, M.; Syms, C.; Thorrold, S.R. Coral reef fish smell leaves to find island homes. Proc. R. Soc. B Biol. Sci. 2008, 275, 2831–2839. [CrossRef]
Gerlach, G.; Atema, J.; Kingsford, M.J.; Black, K.P.; Miller-sims, V. Smelling home can prevent dispersal of reef fish larvae. Proc. Natl. Acad. Sci. USA 2007, 104, 858–863. [CrossRef] [PubMed]
Lecchini, D.; Mills, S.C.; Brié, C.; Maurin, R.; Banaigs, B. Ecological determinants and sensory mechanisms in habitat selection of crustacean postlarvae. Behav. Ecol. 2010, 21, 599–607. [CrossRef]
Lecchini, D.; Planes, S.; Galzin, R. Experimental assessment of sensory modalities of coral-reef fish larvae in the recognition of their settlement habitat. Behav. Ecol. Sociobiol. 2005, 58, 18–26. [CrossRef]
Leis, J.M.; Carson-Ewart, B.M. Complex behaviour by coral-reef fish larvae in open-water and near-reef pelagic environments. Environ. Biol. Fishes 1998, 53, 259–266. [CrossRef]
Leis, J.M.; Carson-Ewart, B.M. In situ swimming and settlement behaviour of larvae of an Indo-Pacific coral-reef fish, the coral trout Plectropomus leopardus (Pisces: Serranidae). Mar. Biol. 1999, 134, 51–64. [CrossRef]
Lecchini, D.; Peyrusse, K.; Lanyon, R.G.; Lecellier, G. Importance of visual cues of conspecifics and predators during the habitat selection of coral reef fish larvae. Comptes Rendus Biol. 2014, 337, 345–351. [CrossRef]
Lillis, A.; Bohnenstiehl, D.; Peters, J.W.; Eggleston, D. Variation in habitat soundscape characteristics influences settlement of a reef-building coral. PeerJ 2016, 4, e2557. [CrossRef]
Apprill, A.; Lillis, A.; Suca, J.J.; Llopiz, J.K.; Mooney, T.A.; Becker, C. Soundscapes influence the settlement of the common Caribbean coral Porites astreoides irrespective of light conditions. R. Soc. Open Sci. 2018, 5, 181358. [CrossRef]
Lillis, A.; Eggleston, D.B.; Bohnenstiehl, D.R. Oyster larvae settle in response to habitat-associated underwater sounds. PLoS ONE 2013, 8, 21–23. [CrossRef]
Eggleston, D.B.; Lillis, A.; Bohnenstiehl, D.R. Soundscapes and Larval Settlement: Larval Bivalve Responses to Habitat-Associated Underwater Sounds. In The Effects of Noise on Aquatic Life II; Springer: New York, NY, USA, 2016; pp. 255–263. [CrossRef]
Hinojosa, I.A.; Green, B.S.; Gardner, C.; Hesse, J.; Stanley, J.A.; Jeffs, A.G. Reef sound as an orientation cue for shoreward migration by pueruli of the rock lobster, Jasus edwardsii. PLoS ONE 2016, 11, e0157862. [CrossRef]
Radford, C.A.; Jeffs, A.G.; Montgomery, J.C. Directional swimming behavior by five species of crab postlarvae in response to reef sound. Bull. Mar. Sci. 2007, 80, 369–378.
Jeffs, A.; Tolimieri, N.; Montgomery, J.C. Crabs on cue for the coast: The use of underwater sound for orientation by pelagic crab stages. Mar. Freshw. Res. 2003, 54, 841–845. [CrossRef]
Radford, C.A.; Tindle, C.T.; Montgomery, J.C.; Jeffs, A.G. Modelling a reef as an extended sound source increases the predicted range at which reef noise may be heard by fish larvae. Mar. Ecol. Prog. Ser. 2011, 438, 167–174. [CrossRef]
Simpson, S.D.; Meekan, M.; Montgomery, J.; McCauley, R.; Jeffs, A. Homeward sound. Science 2005, 308, 221. [CrossRef] [PubMed]
Tolimieri, N.; Jeffs, A.; Montgomery, J.C. Ambient sound as a cue for navigation by the pelagic larvae of reel fishes. Mar. Ecol. Prog. Ser. 2000, 207, 219–224. [CrossRef]
Leis, J.M.; Carson-Ewart, B.M.; Cato, D.H. Sound detection in situ by the larvae of a coral-reef damselfish (Pomacentridae). Mar. Ecol. Prog. Ser. 2002, 232, 259–268. [CrossRef]
Leis, J.M.; Carson-Ewart, B.M.; Hay, A.C.; Cato, D.H. Coral-reef sounds enable nocturnal navigation by some reef-fish larvae in some places and at some times. J. Fish. Biol. 2003, 63, 724–737. [CrossRef]
Parmentier, E.; Berten, L.; Rigo, P.; Aubrun, F.; Nedelec, S.L.; Simpson, S.D.; Lecchini, D. The influence of various reef sounds on coral-fish larvae behaviour. J. Fish. Biol. 2015, 86, 1507–1518. [CrossRef]
Lossent, J.; Di Iorio, L.; Valentini-Poirier, C.; Boissery, P.; Gervaise, C. Mapping the diversity of spectral shapes discriminates between adjacent benthic biophonies. Mar. Ecol. Prog. Ser. 2017, 585, 31–48. [CrossRef]
Gervaise, C.; Lossent, J.; Valentini-Poirier, C.A.; Boissery, P.; Noel, C.; Di Iorio, L. Three-dimensional mapping of the benthic invertebrates biophony with a compact four-hydrophones array. Appl. Acoust. 2019, 148. [CrossRef]
Council, N.R. Ocean Noise and Marine Mammals; The National Academies Press: Washington, DC, USA, 2003.
Kinda, G.B.; Simard, Y.; Gervaise, C.; Mars, J.I.; Fortier, L. Under-ice ambient noise in Eastern Beaufort Sea, Canadian Arctic, and its relation to environmental forcing. J. Acoust. Soc. Am. 2013, 134, 77–87. [CrossRef] [PubMed]
Wenz, G.M. Acoustic Ambient Noise in the Ocean: Spectra and Sources. J. Acoust. Soc. Am. 1962, 34, 1936–1956. [CrossRef]
Gervaise, C.; Simard, Y.; Roy, N.; Kinda, B.; Ménard, N. Shipping noise in whale habitat: Characteristics, sources, budget, and impact on belugas in Saguenay–St. Lawrence Marine Park hub. J. Acoust. Soc. Am. 2012, 132, 76–89. [CrossRef] [PubMed]
Cato, D.H. Marine biological choruses observed in tropical waters near Australia. J. Acoust. Soc. Am. 1978, 64, 736. [CrossRef]
Di Iorio, L.; Raick, X.; Parmentier, E.; Boissery, P.; Valentini-Poirier, C.-A.; Gervaise, C. ‘Posidonia meadows calling’: A ubiquitous fish sound with monitoring potential. Remote Sens. Ecol. Conserv. 2018, 4, 248–263. [CrossRef]
Ainslie, M.A.; McColm, J.G. A simplified formula for viscous and chemical absorption in sea water. J. Acoust. Soc. Am. 1998, 103, 1671–1672. [CrossRef]
Nedelec, S.L.; Campbell, J.; Radford, A.N.; Simpson, S.D.; Merchant, N.D. Particle motion: The missing link in underwater acoustic ecology. Methods Ecol. Evol. 2016, 7, 836–842. [CrossRef]
Egner, S.A.; Mann, D.A. Auditory sensitivity of sergeant major damselfish Abudefduf saxatilis from post-settlement juvenile to adult. Mar. Ecol. Prog. Ser. 2005, 285, 213–222. [CrossRef]
Yost, W.A. Fundamentals of Hearing; Academic Press: San Diego, CA, USA, 2000; ISBN 9780127756950.
Zwicker, E.; Flottorp, G.; Stevens, S.S. Critical Band Width in Loudness Summation. J. Acoust. Soc. Am. 1957, 29, 548–557. [CrossRef]
Wright, K.J.; Higgs, D.M.; Belanger, A.J.; Leis, J.M. Auditory and olfactory abilities of pre-settlement larvae and post-settlement juveniles of a coral reef damselfish (Pisces: Pomacentridae). Mar. Biol. 2005, 147, 1425–1434. [CrossRef]
Wright, K.J.; Higgs, D.M.; Leis, J.M. Ontogenetic and interspecific variation in hearing ability in marine fish larvae. Mar. Ecol. Prog. Ser. 2011, 424, 1–13. [CrossRef]
Taylor, K.A.; Nachtigall, P.E.; Mooney, T.A.; Supin, A.Y.; Yuen, M.M.L. A Portable System for the Evaluation of the Auditory Capabilities of Marine Mammals. Aquat. Mamm. 2007, 33, 93–99. [CrossRef]
Kenyon, T.N. Ontogenetic changes in the auditory sensitivity of damselfishes (pomacentridae). J. Comp. Physiol. A Sens. Neural Behav. Physiol. 1996, 179, 553–561. [CrossRef]
Wright, K.J.; Higgs, D.M.; Belanger, A.J.; Leis, J.M. Auditory and olfactory abilities of larvae of the Indo-Pacific coral trout Plectropomus leopardus (Lacepède) at settlement. J. Fish. Biol. 2008, 72, 2543–2556. [CrossRef]
Colleye, O.; Kéver, L.; Lecchini, D.; Berten, L.; Parmentier, E. Auditory evoked potential audiograms in post-settlement stage individuals of coral reef fishes. J. Exp. Mar. Bio. Ecol. 2016, 483, 1–9. [CrossRef]
Montgomery, J.C.; Jeffs, A.; Simpson, S.D.; Meekan, M.; Tindle, C. Sound as an Orientation Cue for the Pelagic Larvae of Reef Fishes and Decapod Crustaceans. Adv. Mar. Biol. 2006, 51, 143–196. [CrossRef]
Radford, C.A.; Montgomery, J.C.; Caiger, P.; Higgs, D.M. Pressure and particle motion detection thresholds in fish: A re-examination of salient auditory cues in teleosts. J. Exp. Biol. 2012, 215, 3429–3435. [CrossRef]
Wysocki, L.E.; Codarin, A.; Ladich, F.; Picciulin, M. Sound pressure and particle acceleration audiograms in three marine fish species from the Adriatic Sea. J. Acoust. Soc. Am. 2009, 126, 2100–2107. [CrossRef] [PubMed]
Chapman, C.J.; Sand, O. Field studies of hearing in two species of flatfish Pleuronectes platessa (L.) and Limanda limanda (L.) (family pleuronectidae). Comp. Biochem. Physiol. Part A Physiol. 1974, 47, 371–385. [CrossRef]
Pacini, A.F.; Nachtigall, P.E.; Quintos, C.T.; Schofield, T.D.; Look, D.A.; Levine, G.A.; Turner, J.P. Audiogram of a stranded Blainville’s beaked whale (Mesoplodon densirostris) measured using auditory evoked potentials. J. Exp. Biol. 2011, 214, 2409–2415. [CrossRef] [PubMed]
Greenhow, D.R.; Brodsky, M.C.; Lingenfelser, R.G.; Mann, D.A. Hearing threshold measurements of five stranded short-finned pilot whales (Globicephala macrorhynchus). J. Acoust. Soc. Am. 2014, 135, 531–536. [CrossRef] [PubMed]
Kastelein, R.A.; Hagedoorn, M.; Au, W.W.L.; de Haan, D. Audiogram of a striped dolphin (Stenella coeruleoalba). J. Acoust. Soc. Am. 2003, 113, 1130–1137. [CrossRef] [PubMed]
Houser, D.S.; Helweg, D.A.; Moore, P.W.B. A bandpass filter-bank model of auditory sensitivity in the humpback whale. Aquat. Mamm. 2001, 27, 82–91.
Randall Hughes, A.; Mann, D.A.; Kimbro, D.L. Predatory fish sounds can alter crab foraging behaviour and influence bivalve abundance. Proc. R. Soc. B Biol. Sci. 2014, 281. [CrossRef]
Breithaupt, T.; Tautz, J. Vibration sensitivity of the crayfish statocyst. Naturwissenschaften 1988, 75, 310–312. [CrossRef]
Lovell, J.M.; Findlay, M.M.; Moate, R.M.; Yan, H.Y. The hearing abilities of the prawn Palaemon serratus. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2005, 140, 89–100. [CrossRef]
Hu, M.Y.; Yan, H.Y.; Chung, W.S.; Shiao, J.C.; Hwang, P.P. Acoustically evoked potentials in two cephalopods inferred using the auditory brainstem response (ABR) approach. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2009, 153, 278–283. [CrossRef]
Mooney, T.A.; Al, E. Sound detection b the longfin squid (Loligo pealeii) studied with auditory evoked potentials: Sensitivity to low-frequency particle motion and not pressure. J. Exp. Biol. 2010, 213, 3748–3759. [CrossRef]
Budelmann, B.U.; Bleckmann, H. A lateral line analogue in cephalopods: Water waves generate microphonic potentials in the epidermal head lines of Sepia and Lolliguncula. J. Comp. Physiol. A 1988, 164, 1–5. [CrossRef]
Piercy, J.J.B.; Codling, E.A.; Hill, A.J.; Smith, D.J.; Simpson, S.D. Habitat quality affects sound production and likely distance of detection on coral reefs. Mar. Ecol. Prog. Ser. 2014, 516, 35–47. [CrossRef]
Bertucci, F.; Parmentier, E.; Berten, L.; Brooker, R.M.; Lecchini, D. Temporal and spatial comparisons of underwater sound signatures of different reef habitats in Moorea Island, French Polynesia. PLoS ONE 2015, 10, e0135733. [CrossRef] [PubMed]
Kaplan, M.B.; Mooney, T.A. Coral reef soundscapes may not be detectable far from the reef. Sci. Rep. 2016, 6, 1–10. [CrossRef] [PubMed]
Stanley, J.A.; Radford, C.A.; Jeffs, A.G. Behavioural response thresholds in New Zealand crab megalopae to ambient underwater sound. PLoS ONE 2011, 6. [CrossRef] [PubMed]
Holles, S.H.; Simpson, S.D.; Radford, A.N.; Berten, L.; Lecchini, D. Boat noise disrupts orientation behaviour in a coral reef fish. Mar. Ecol. Prog. Ser. 2013, 485, 295–300. [CrossRef]
Simpson, S.D.; Radford, A.N.; Holles, S.; Ferarri, M.C.O.; Chivers, D.P.; Mccormick, M.I.; Meekan, M.G. Small-boat noise impacts natural settlement behavior of coral reef fish larvae. In The Effects of Noise on Aquatic Life II; Springer: New York, NY, USA, 2016; Volume 875, pp. 1041–1048. ISBN 978-1-4939-2980-1.
Moore, S.E.; Clarke, J.T. Potential impact of offshore human activities on gray whales. J. Cetacean Res. Manag. 2002, 4, 19–25.
Fay, R.R. The goldfish ear codes the axis of acoustic particle motion in three dimensions. Science 1984, 225, 951–954. [CrossRef] [PubMed]
Horodysky, A.Z.; Brill, R.W.; Fine, M.L.; Musick, J.A.; Latour, R.J. Acoustic pressure and particle motion thresholds in six sciaenid fishes. J. Exp. Biol. 2008, 211, 1504–1511. [CrossRef] [PubMed]
Norris, K.S. Some observations on the migration and orientation of marine mammals. In Animal Orientation and Navigation, Proceedings of the Twenty-Seventh Annual Biology Colloquium, Corvallis, OR, USA, 6–7 May 1966; Storm, R.M., Ed.; Oregon State University Press: Corvallis, OR, USA, 1966; pp. 101–125.
Au, W.W.L.; Hastings, M.C. Principles of Marine Bioacoustics; Springer: New York, NY, USA, 2008; ISBN 978-0-387-78364-2.