East Antarctica; sea ice; ocean; ice shelves; tides; dense shelf water
Abstract :
[en] The D’Urville Sea, East Antarctica, is a major source of Dense Shelf Water (DSW), a precursor of Antarctic Bottom Water (AABW). AABW is a key water mass involved in the worldwide ocean circulation and long-term climate variability. The properties of AABW in global climate models suffer from several biases, making climate projections uncertain. These models are potentially omitting or misrepresenting important mechanisms involved in the formation of DSW, such as tides and ocean–ice shelf interactions. Recent studies pointed out that tides and ice shelves significantly influence the coastal seas of Antarctica, where AABW originates from. Yet, the implications of these two processes in the formation and evolution of DSW are poorly understood, in particular in the D’Urville Sea. Using a series of NEMO-LIM numerical simulations, we assess the sensitivity of
dense water formation in the D’Urville Sea to the representation of tides and ocean–ice shelf interactions during the years 2010–2015. We show that the ice shelves off Adélie Land are highly sensitive to tidal forcing, with a significant basal melt increase in the presence of tides. Ice shelf basal melt freshens and cools the ocean over significant portions of the coastal seas at the depth of the ice shelf draft. An opposite warming and increase in salinity are found in the upper layers. The influence of ice shelf basal melt on the ocean is largely increased in the presence of tides. However, the production of sea ice is found to be mostly unaffected by these two processes. Water mass transport out of polynyas and ice shelf cavities are then investigated, together with their sensitivity to tides and ocean–ice shelf interactions. Ice shelf basal melt impacts the volume of dense waters in two ways: (1) Dense Shelf Water and Modified Shelf Water are consumed to form water masses of intermediate density inside the ice shelf cavities, and (2) the freshening of the ocean subsurface makes its transformation into dense water by sea ice formation more difficult. These results suggest that ice shelf basal melt variability can explain part of the observed changes of dense water properties, and may also affect the production of dense water in a future climate.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Huot, Pierre-Vincent
Fichefet, T.
Jourdain, N.C.
Mathiot, P.
Rousset, C.
Kittel, Christoph ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Fettweis, Xavier ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Language :
English
Title :
Influence of ocean tides and ice shelves on ocean–ice interactions and dense shelf water formation in the D’Urville Sea, Antarctica
Publication date :
2021
Journal title :
Ocean Modelling
ISSN :
1463-5003
eISSN :
1463-5011
Publisher :
Elsevier, Netherlands
Volume :
162
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
Tier-1 supercomputer CÉCI : Consortium des Équipements de Calcul Intensif
Name of the research project :
Air-Ice-Ocean Interactions in Antarctica
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique FWB - Fédération Wallonie-Bruxelles
Abernathey, R.P., Cerovecki, I., Holland, P.R., Newsom, E., Mazloff, M., Talley, L.D., Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat. Geosci. 9 (2016), 596–601.
Adusumilli, S., Fricker, H.A., Medley, B., Padman, L., Siegfried, M.R., Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nat. Geosci. 13 (2020), 616–620.
Alley, R.B., Clark, P.U., Huybrechts, P., Joughin, I., Ice-sheet and sea-level changes. Science 310 (2005), 456–460.
Aoki, S., Kobayashi, R., Rintoul, S., Tamura, T., Kusahara, K., Changes in water properties and flow regime on the continental shelf off the Adélie/George VL and coast, East Antarctica, after glacier tongue calving. J. Geophys. Res.: Oceans 122 (2017), 6277–6294.
Aoki, S., Rintoul, S.R., Ushio, S., Watanabe, S., Bindoff, N.L., Freshening of the Adélie Land Bottom water near 140 E. Geophys. Res. Lett., 32, 2005.
Aoki, S., Yamazaki, K., Hirano, D., Katsumata, K., Shimada, K., Kitade, Y., Sasaki, H., Murase, H., Reversal of freshening trend of Antarctic Bottom Water in the Australian-Antarctic Basin during 2010s. Sci. Rep. 10 (2020), 1–7.
Arzeno, I.B., Beardsley, R.C., Limeburner, R., Owens, B., Padman, L., Springer, S.R., Stewart, C.L., Williams, M.J., Ocean variability contributing to basal melt rate near the ice front of Ross Ice Shelf, Antarctica. J. Geophys. Res.: Oceans 119 (2014), 4214–4233.
Beaman, R.J., O'Brien, P.E., Post, A.L., De Santis, L., A new high-resolution bathymetry model for the Terre Adeĺie and George V continental margin, East Antarctica. Antarct. Sci. 23 (2011), 95–103.
Berthier, E., Raup, B., Scambos, T., New velocity map and mass-balance estimate of Mertz Glacier, East Antarctica, derived from Landsat sequential imagery. J. Glaciol. 49 (2003), 503–511.
Bintanja, R., Van Oldenborgh, G., Katsman, C., The effect of increased fresh water from Antarctic ice shelves on future trends in Antarctic sea ice. Ann. Glaciol. 56 (2015), 120–126.
Boucher, O., Servonnat, J., Albright, A.L., Aumont, O., Balkanski, Y., Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., et al. Presentation and evaluation of the IPSL-CM6a-LR climate model. J. Adv. Modelling Earth Syst. 12 (2020), 1–52.
Bougeault, P., Lacarrere, P., Parameterization of orography-induced turbulence in a mesobeta–scale model. Mon. Weather Rev. 117 (1989), 1872–1890.
Bronselaer, B., Winton, M., Griffies, S.M., Hurlin, W.J., Rodgers, K.B., Sergienko, O.V., Stouffer, R.J., Russell, J.L., Change in future climate due to Antarctic meltwater. Nature 564 (2018), 53–58.
Cabanes, C., Grouazel, A., Schuckmann, K.v., Hamon, M., Turpin, V., Coatanoan, C., Paris, F., Guinehut, S., Boone, C., Ferry, N., et al. The CORA dataset: validation and diagnostics of in-situ ocean temperature and salinity measurements. Ocean Sci. 9 (2013), 1–18.
Carrère, L., Lyard, F., Cancet, M., Guillot, A., Roblou, L., 2012. A new global tidal model taking taking advantage of nearly 20 years of altimetry. In: Proceedings of Meeting 20 Years of Altimetry.
Cougnon, E., Galton-Fenzi, B., Meijers, A., Legrésy, B., Modeling interannual dense shelf water export in the region of the Mertz Glacier Tongue (1992–2007). J. Geophys. Res.: Oceans 118 (2013), 5858–5872.
Cougnon, E., Galton-Fenzi, B., Rintoul, S., Legrésy, B., Williams, G., Fraser, A., Hunter, J., Regional changes in icescape impact shelf circulation and basal melting. Geophys. Res. Lett., 44, 2017.
De Lavergne, C., Palter, J.B., Galbraith, E.D., Bernardello, R., Marinov, I., Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nature Clim. Change, 4, 2014, 278.
Depoorter, M.A., Bamber, J., Griggs, J., Lenaerts, J.T., Ligtenberg, S.R., van den Broeke, M.R., Moholdt, G., Calving fluxes and basal melt rates of Antarctic ice shelves. Nature, 502, 2013, 89.
Donlon, C.J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., Wimmer, W., The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sens. Environ. 116 (2012), 140–158.
Engedahl, H., Use of the flow relaxation scheme in a three-dimensional baroclinic ocean model with realistic topography. Tellus A 47 (1995), 365–382.
EUMETSAT, Global sea ice concentration reprocessing data- set 1978–2015 (v1.2). 2015.
Flather, R.A., A storm surge prediction model for the northern Bay of Bengal with application to the cyclone disaster in April 1991. J. Phys. Oceanogr. 24 (1994), 172–190.
Fogwill, C., Phipps, S., Turney, C., Golledge, N., Sensitivity of the Southern Ocean to enhanced regional Antarctic ice sheet meltwater input. Earth's Future 3 (2015), 317–329.
Fraser, A.D., Massom, R.A., Michael, K.J., Galton-Fenzi, B.K., Lieser, J.L., East Antarctic landfast sea ice distribution and variability, 2000–08. J. Clim. 25 (2012), 1137–1156.
Fretwell, P., Pritchard, H.D., Vaughan, D.G., Bamber, J., Barrand, N., Bell, R., Bianchi, C., Bingham, R., Blankenship, D.D., Casassa, G., et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. 2013.
Gaspar, P., Grégoris, Y., Lefevre, J.M., A simple Eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and Long-Term Upper Ocean Study site. J. Geophys. Res.: Oceans 95 (1990), 16179–16193.
Hallberg, R., Using a resolution function to regulate parameterizations of oceanic mesoscale Eddy effects. Ocean Model. 72 (2013), 92–103.
Hausmann, U., Sallée, J.B., Jourdain, N., Mathiot, P., Rousset, C., Madec, G., Deshayes, J., Hattermann, T., The role of tides in ocean–ice-shelf interactions in the southwestern Weddell Sea. J. Geophys. Res.: Oceans, 2020 e2019JC015847.
Held, I., Guo, H., Adcroft, A., Dunne, J., Horowitz, L., Krasting, J., Shevliakova, E., Winton, M., Zhao, M., Bushuk, M., et al. Structure and performance of GFDL's CM4. 0 climate model. J. Adv. Modelling Earth Syst. 11 (2019), 3691–3727.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146 (2020), 1999–2049.
Heuzé, C., Antarctic bottom water and north Atlantic deep water in CMIP6 models. Ocean Sci. Discuss., 2020, 1–38.
Heuzé, C., Heywood, K.J., Stevens, D.P., Ridley, J.K., Southern Ocean bottom water characteristics in CMIP5 models. Geophys. Res. Lett. 40 (2013), 1409–1414.
Jacobs, S.S., Bottom water production and its links with the thermohaline circulation. Antarct. Sci. 16 (2004), 427–437.
Jenkins, A., A one-dimensional model of ice shelf-ocean interaction. J. Geophys. Res.: Oceans 96 (1991), 20671–20677.
Jeong, H., Asay-Davis, X.S., Turner, A.K., Comeau, D.S., Price, S.F., Abernathey, R.P., Veneziani, M., Petersen, M.R., Hoffman, M.J., Mazloff, M.R., et al. Impacts of ice-shelf melting on water-mass transformation in the southern ocean from E3SM simulations. J. Clim. 33 (2020), 5787–5807.
Johnson, G.C., Quantifying Antarctic bottom water and North Atlantic deep water volumes. J. Geophys. Res.: Oceans, 113, 2008.
Jonassen, M.O., Välisuo, I., Vihma, T., Uotila, P., Makshtas, A.P., Launiainen, J., Assessment of atmospheric reanalyses with independent observations in the Weddell Sea, the Antarctic. J. Geophys. Res.: Atmos. 124 (2019), 12468–12484.
Jones, R.W., Renfrew, I.A., Orr, A., Webbeg, B.G.M., Holland, D.M., Lazzaea, M.A., Evaluation of four global reanalysis products using in situ observations in the Amundsen Sea Embayment, Antarctica. J. Geophys. Res.: Atmos. 121 (2016), 6240–6257.
Jourdain, N.C., Mathiot, P., Merino, N., Durand, G., Le Sommer, J., Spence, P., Dutrieux, P., Madec, G., Ocean circulation and sea-ice thinning induced by melting ice shelves in the Amundsen Sea. J. Geophys. Res.: Oceans 122 (2017), 2550–2573.
Jourdain, N.C., Molines, J.M., Le Sommer, J., Mathiot, P., Chanut, J., de Lavergne, C., Madec, G., Simulating or prescribing the influence of tides on the Amundsen Sea ice shelves. Ocean Model. 133 (2019), 44–55.
Jungclaus, J., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D., Mikolajewicz, U., Notz, D., Von Storch, J., Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J. Adv. Modelling Earth Syst. 5 (2013), 422–446.
Koentopp, M., Eisen, O., Kottmeier, C., Padman, L., Lemke, P., Influence of tides on sea ice in the Weddell Sea: Investigations with a high-resolution dynamic-thermodynamic sea ice model. J. Geophys. Res.: Oceans, 110, 2005.
Kusahara, K., Hasumi, H., Fraser, A.D., Aoki, S., Shimada, K., Williams, G.D., Massom, R., Tamura, T., Modeling ocean–cryosphere interactions off Adeĺie and George V land, East Antarctica. J. Clim. 30 (2017), 163–188, 10.1175/jcli-d-15-0808.1.
Kusahara, K., Hasumi, H., Tamura, T., Modeling sea ice production and dense shelf water formation in coastal polynyas around East Antarctica. J. Geophys. Res., 115, 2010, 10.1029/2010jc006133.
Kusahara, K., Hasumi, H., Williams, G.D., Impact of the Mertz Glacier Tongue calving on dense water formation and export. Nat. Commun., 2, 2011, 159.
Lacarra, M., Houssais, M.N., Herbaut, C., Sultan, E., Beauverger, M., Dense shelf water production in the Adelié Depression, East Antarctica, 2004-2012: Impact of the Mertz Glacier calving. J. Geophys. Res.: Oceans 119 (2014), 5203–5220, 10.1002/2013jc009124.
Large, W.G., Yeager, S.G., Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies. 2004.
Lavergne, T., Sørensen, A.M., Kern, S., Tonboe, R., Notz, D., Aaboe, S., Bell, L., Dybkjær, G., Eastwood, S., Gabarro, C., et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere 13 (2019), 49–78.
Lemieux, J.F., Dupont, F., Blain, P., Roy, F., Smith, G.C., Flato, G.M., Improving the simulation of landfast ice by combining tensile strength and a parameterization for grounded ridges. J. Geophys. Res.: Oceans 121 (2016), 7354–7368.
Locarnini, R., Mishonov, A., Antonov, J., Boyer, T., Garcia, H., Baranova, O., Zweng, M., Paver, C., Reagan, J., Johnson, D., Hamilton, M., Seidov, D., World Ocean Atlas2013, Vol. 1: Temperature. 2013, NOAA Atlas NESDIS 73.
Locarnini, R., Mishonov, A., Baranova, O., Boyer, T., Zweng, M., Garcia, H., Reagan, J., Seidov, D., Weathers, K., Paver, C., Smolyar, I., World Ocean Atlas 2018, Vol. 1: Temperature. 2018, NOAA Atlas NESDIS 81.
Losch, M., Modeling ice shelf cavities in azcoordinate ocean general circulation model. J. Geophys. Res., 113, 2008, 10.1029/2007jc004368.
Luneva, M.V., Aksenov, Y., Harle, J.D., Holt, J.T., The effects of tides on the water mass mixing and sea ice in the Arctic Ocean. J. Geophys. Res.: Oceans 120 (2015), 6669–6699, 10.1002/2014jc010310.
Lurton, T., Balkanski, Y., Bastrikov, V., Bekki, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Contoux, C., Cozic, A., et al. Implementation of the CMIP6 forcing data in the IPSL-CM6A-LR model. J. Adv. Modelling Earth Syst., 12, 2020 e2019MS001940.
Madec, G., NEMO ocean engine. Note du Pôle de modélisation 1288-1619, 2016, Institut Pierre-Simon Laplace (IPSL), France, No 27.
Makinson, K., Holland, P.R., Jenkins, A., Nicholls, K.W., Holland, D.M., Influence of tides on melting and freezing beneath Filchner–Ronne Ice Shelf, Antarctica. Geophys. Res. Lett., 38, 2011, 10.1029/2010gl046462 n/a–n/a.
Mantyla, A.W., Reid, J.L., Abyssal characteristics of the World Ocean waters. Deep-Sea Res. A 30 (1983), 805–833.
Maraldi, C., Chanut, J., Levier, B., Ayoub, N., De Mey, P., Reffray, G., Lyard, F., Cailleau, S., Drévillon, E., et al. NEMO on the shelf: assessment of the Iberia-Biscay-Ireland configuration. 2013.
Martin, A., Houssais, M.N., Goff, H.L., Marec, C., Dausse, D., Circulation and water mass transports on the East Antarctic shelf in the Mertz Glacier region. Deep-Sea Res. I 126 (2017), 1–20, 10.1016/j.dsr.2017.05.007.
Massom, R., Harris, P., Michael, K.J., Potter, M., The distribution and formative processes of latent-heat polynyas in East Antarctica. Ann. Glaciol. 27 (1998), 420–426.
Mathiot, P., Barnier, B., Gallée, H., Molines, J.M., Sommer, J.L., Juza, M., Penduff, T., Introducing katabatic winds in global ERA40 fields to simulate their impacts on the Southern Ocean and sea-ice. Ocean Model. 35 (2010), 146–160, 10.1016/j.ocemod.2010.07.001.
Mathiot, P., Jenkins, A., Harris, C., Madec, G., Explicit representation and parametrised impacts of under ice shelf seas in the z* coordinate ocean model NEMO 3.6. Geosci. Model Dev. 10 (2017), 2849–2874, 10.5194/gmd-10-2849-2017.
Mathiot, P., Jourdain, N.C., Barnier, B., Gallée, H., Molines, J.M., Sommer, J.L., Penduff, T., Sensitivity of coastal polynyas and high-salinity shelf water production in the Ross Sea, Antarctica, to the atmospheric forcing. Ocean Dyn. 62 (2012), 701–723, 10.1007/s10236-012-0531-y.
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M., et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1. 2) and its response to increasing CO2. J. Adv. Modelling Earth Syst. 11 (2019), 998–1038.
Mayet, C., Testut, L., Legresy, B., Lescarmontier, L., Lyard, F., High-resolution barotropic modeling and the calving of the Mertz Glacier, East Antarctica. J. Geophys. Res.: Oceans 118 (2013), 5267–5279, 10.1002/jgrc.20339.
Menviel, L., Timmermann, A., Timm, O.E., Mouchet, A., Climate and biogeochemical response to a rapid melting of the West Antarctic Ice Sheet during interglacials and implications for future climate. Paleoceanography, 25, 2010.
Merino, N., Jourdain, N.C., Le Sommer, J., Goosse, H., Mathiot, P., Durand, G., Impact of increasing antarctic glacial freshwater release on regional sea-ice cover in the Southern Ocean. Ocean Model. 121 (2018), 76–89.
Merino, N., Sommer, J.L., Durand, G., Jourdain, N.C., Madec, G., Mathiot, P., Tournadre, J., Antarctic icebergs melt over the Southern Ocean: Climatology and impact on sea ice. Ocean Model. 104 (2016), 99–110, 10.1016/j.ocemod.2016.05.001.
Mueller, R., Padman, L., Dinniman, M.S., Erofeeva, S., Fricker, H.A., King, M., Impact of tide-topography interactions on basal melting of Larsen C Ice Shelf, Antarctica. J. Geophys. Res.: Oceans, 117, 2012.
Nihashi, S., Ohshima, K.I., Circumpolar mapping of antarctic coastal polynyas and landfast sea ice: Relationship and variability. J. Clim. 28 (2015), 3650–3670, 10.1175/jcli-d-14-00369.1.
Ohshima, K.I., Fukamachi, Y., Williams, G.D., Nihashi, S., Roquet, F., Kitade, Y., Tamura, T., Hirano, D., Herraiz-Borreguero, L., Field, I., et al. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya. Nat. Geosci., 6, 2013, 235.
Olason, E., A dynamical model of Kara Sea land-fast ice. J. Geophys. Res.: Oceans 121 (2016), 3141–3158, 10.1002/2016jc011638.
Padman, L., Howard, S.L., Orsi, A.H., Muench, R.D., Tides of the northwestern Ross Sea and their impact on dense outflows of Antarctic Bottom Water. Deep-Sea Res. II 56 (2009), 818–834, 10.1016/j.dsr2.2008.10.026.
Padman, L., Siegfried, M.R., Fricker, H.A., Ocean tide influences on the antarctic and greenland ice sheets. Rev. Geophys. 56 (2018), 142–184, 10.1002/2016rg000546.
Pardo, P.C., Pérez, F.F., Khatiwala, S., Ríos, A.F., Anthropogenic CO2 estimates in the Southern Ocean: Storage partitioning in the different water masses. Prog. Oceanogr. 120 (2014), 230–242.
Pauling, A.G., Bitz, C.M., Smith, I.J., Langhorne, P.J., The response of the Southern Ocean and Antarctic sea ice to freshwater from ice shelves in an Earth system model. J. Clim. 29 (2016), 1655–1672.
Purkey, S.G., Johnson, G.C., Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Clim. 26 (2013), 6105–6122.
Rignot, E., Mass balance of East Antarctic glaciers and ice shelves from satellite data. Ann. Glaciol. 34 (2002), 217–227.
Rignot, E., Jacobs, S., Mouginot, J., Scheuchl, B., Ice-shelf melting around Antarctica. Science 341 (2013), 266–270, 10.1126/science.1235798.
Rintoul, S.R., On the origin and influence of Adélie Land Bottom Water. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, Vol. 75, 1998, 151–171.
Rintoul, S.R., Rapid freshening of Antarctic Bottom Water formed in the Indian and Pacific oceans. Geophys. Res. Lett., 34, 2007.
Rousset, C., Vancoppenolle, M., Madec, G., Fichefet, T., Flavoni, S., Barthélemy, A., Benshila, R., Chanut, J., Levy, C., Masson, S., Vivier, F., The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities. Geosci. Model Dev. 8 (2015), 2991–3005, 10.5194/gmd-8-2991-2015.
Sallée, J.B., Shuckburgh, E., Bruneau, N., Meijers, A.J., Bracegirdle, T.J., Wang, Z., Roy, T., Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and forcing response. J. Geophys. Res.: Oceans 118 (2013), 1830–1844.
Schloesser, F., Friedrich, T., Timmermann, A., DeConto, R.M., Pollard, D., Antarctic iceberg impacts on future Southern Hemisphere climate. Nature Clim. Change 9 (2019), 672–677.
Semmler, T., Danilov, S., Gierz, P., Goessling, H.F., Hegewald, J., Hinrichs, C., Koldunov, N., Khosravi, N., Mu, L., Rackow, T., et al. Simulations for CMIP6 with the AWI climate model AWI-CM-1-1. J. Adv. Modelling Earth Syst., 2019 e2019MS002009.
Silvano, A., Rintoul, S.R., Peña-Molino, B., Hobbs, W.R., van Wijk, E., Aoki, S., Tamura, T., Williams, G.D., Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water. Sci. Adv., 4, 2018 eaap9467.
Snow, K., Rintoul, S.R., Sloyan, B.M., Hogg, A.M., Change in dense shelf water and Adeĺie land bottom water precipitated by Iceberg calving. Geophys. Res. Lett. 45 (2018), 2380–2387, 10.1002/2017gl076195.
Snow, K., Sloyan, B., Rintoul, S., Hogg, A.M., Downes, S., Controls on circulation, cross-shelf exchange, and dense water formation in an Antarctic polynya. Geophys. Res. Lett. 43 (2016), 7089–7096.
Spreen, G., Kaleschke, L., Heygster, G., Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res.: Oceans, 113, 2008.
Stewart, A.L., Klocker, A., Menemenlis, D., Circum-Antarctic shoreward heat transport derived from an Eddy-and tide-resolving simulation. Geophys. Res. Lett. 45 (2018), 834–845.
Stocker, T.F., Wright, D.G., Broecker, W.S., The influence of high-latitude surface forcing on the global thermohaline circulation. Paleoceanography 7 (1992), 529–541.
Storkey, D., Blaker, A.T., Mathiot, P., Megann, A., Aksenov, Y., Blockley, E.W., Calvert, D., Graham, T., Hewitt, H.T., Hyder, P., et al. UK Global Ocean GO6 and GO7: A traceable hierarchy of model resolutions. Geosci. Model Dev. 11 (2018), 3187–3213.
Tamura, T., Ohshima, K.I., Fraser, A.D., Williams, G.D., Sea ice production variability in Antarctic coastal polynyas. J. Geophys. Res.: Oceans 121 (2016), 2967–2979.
Tamura, T., Ohshima, K.I., Nihashi, S., Mapping of sea ice production for Antarctic coastal polynyas. Geophys. Res. Lett., 35, 2008, 10.1029/2007gl032903 n/a–n/a.
Tamura, T., Williams, G.D., Fraser, A.D., Ohshima, K.I., Potential regime shift in decreased sea ice production after the Mertz Glacier calving. Nature Commun., 3, 2012, 10.1038/ncomms1820.
Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., Maqueda, M.A.M., Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Model. 27 (2009), 33–53, 10.1016/j.ocemod.2008.10.005.
Wang, Q., Danilov, S., Hellmer, H., Sidorenko, D., Schröter, J., Jung, T., Enhanced cross-shelf exchange by tides in the western Ross Sea. Geophys. Res. Lett. 40 (2013), 5735–5739, 10.1002/2013gl058207.
Wang, Q., Danilov, S., Sidorenko, D., Timmermann, R., Wekerle, C., Wang, X., Jung, T., Schröter, J., The Finite Element Sea Ice-Ocean Model (FESOM) v. 1.4: formulation of an ocean general circulation model. Geosci. Model Dev. 7 (2014), 663–693.
Weatherall, P., Marks, K.M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J.E., Rovere, M., Chayes, D., Ferrini, V., Wigley, R., A new digital bathymetric model of the world's oceans. Earth Space Sci. 2 (2015), 331–345, 10.1002/2015ea000107.
Wendler, G., Stearns, C., Weidner, G., Dargaud, G., Parish, T., On the extraordinary katabatic winds of Adelié Land. J. Geophys. Res.: Atmos. 102 (1997), 4463–4474.
Whitworth, T. III, Orsi, A., Kim, S.J., Nowlin, W. Jr., Locarnini, R., Water masses and mixing near the Antarctic Slope Front. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, Vol. 75, 1998, 1–27.
Williams, G.D., Bindoff, N.L., Marsland, S.J., Rintoul, S.R., Formation and export of dense shelf water from the Adélie Depression, East Antarctica. J. Geophys. Res., 113, 2008, 10.1029/2007jc004346.
Zweng, M., Reagan, J., Antonov, J., Mishonov, A., Boyer, T., Garcia, H., Baranova, O., Johnson, D., Seidov, D., Biddle, M., World Ocean Atlas2013, Vol. 2: Salinity. 2013, NOAA Atlas NESDIS 74.
Zweng, M., Reagan, J., Seidov, D., Boyer, T., Locarnini, R., Garcia, H., Mishonov, A., Baranova, O., Weathers, K., Paver, C., Smolyar, I., World Ocean Atlas 2018, Vol. 2: Salinity. 2018, NOAA Atlas NESDIS 82.