Article (Scientific journals)
Surface melt and runoff on Antarctic ice shelves at 1.5°C, 2°C and 4°C of future warming
Gilbert, Ella; Kittel, Christoph
2021In Geophysical Research Letters
Peer Reviewed verified by ORBi
 

Files


Full Text
2020GL091733_accepted.pdf
Author postprint (2.49 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
surface mass balance; surface melting; runoff; ice shelves; Antarctica
Abstract :
[en] The future surface mass balance (SMB) of Antarctic ice shelves has not been constrained with models of sufficient resolution and complexity. Here, we force the high‐resolution Modèle Atmosphérique Régional (MAR) with future simulations from four CMIP models to evaluate the likely effects on the SMB of warming of 1.5°C, 2°C and 4°C above pre‐industrial temperatures. We find non‐linear growth in melt and runoff which causes SMB to become less positive with more pronounced warming. Consequently, Antarctic ice shelves may be more likely to contribute indirectly to sea level rise via hydrofracturing‐induced collapse, which facilitates accelerated glacial discharge. Using runoff and melt as indicators of ice shelf stability, we find that several Antarctic ice shelves (Larsen C, Wilkins, Pine Island and Shackleton) are vulnerable to disintegration at 4°C. Limiting 21st century warming to 2°C will halve the ice shelf area susceptible to hydrofracturing‐induced collapse compared to 4°C.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Gilbert, Ella
Kittel, Christoph  ;  Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Language :
English
Title :
Surface melt and runoff on Antarctic ice shelves at 1.5°C, 2°C and 4°C of future warming
Publication date :
2021
Journal title :
Geophysical Research Letters
ISSN :
0094-8276
eISSN :
1944-8007
Publisher :
Wiley, Washington, United States - District of Columbia
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
Tier-1 supercomputer
CÉCI : Consortium des Équipements de Calcul Intensif
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 10 April 2021

Statistics


Number of views
67 (4 by ULiège)
Number of downloads
126 (4 by ULiège)

Scopus citations®
 
82
Scopus citations®
without self-citations
71
OpenCitations
 
13
OpenAlex citations
 
167

publications
0
supporting
0
mentioning
0
contrasting
0
Smart Citations
0
0
0
0
Citing PublicationsSupportingMentioningContrasting
View Citations

See how this article has been cited at scite.ai

scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

Bibliography


Similar publications



Sorry the service is unavailable at the moment. Please try again later.
Contact ORBi