surface mass balance; surface melting; runoff; ice shelves; Antarctica
Abstract :
[en] The future surface mass balance (SMB) of Antarctic ice shelves has not been constrained with models of sufficient resolution and complexity. Here, we force the high‐resolution Modèle Atmosphérique Régional (MAR) with future simulations from four CMIP models to evaluate the likely effects on the SMB of warming of 1.5°C, 2°C and 4°C above pre‐industrial temperatures. We find non‐linear growth in melt and runoff which causes SMB to become less positive with more pronounced warming. Consequently, Antarctic ice shelves may be more likely to contribute indirectly to sea level rise via hydrofracturing‐induced collapse, which facilitates accelerated glacial discharge. Using runoff and melt as indicators of ice shelf stability, we find that several Antarctic ice shelves (Larsen C, Wilkins, Pine Island and Shackleton) are vulnerable to disintegration at 4°C. Limiting 21st century warming to 2°C will halve the ice shelf area susceptible to hydrofracturing‐induced collapse compared to 4°C.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Gilbert, Ella
Kittel, Christoph ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Language :
English
Title :
Surface melt and runoff on Antarctic ice shelves at 1.5°C, 2°C and 4°C of future warming
Publication date :
2021
Journal title :
Geophysical Research Letters
ISSN :
0094-8276
eISSN :
1944-8007
Publisher :
Wiley, Washington, United States - District of Columbia
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
Tier-1 supercomputer CÉCI : Consortium des Équipements de Calcul Intensif
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., et al. (2019). Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes. The Cryosphere, 13, 281–296. https://doi.org/10.5194/tc-13-281-2019
Agosta, C., Fettweis, X., & Datta, R. (2015). Evaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance. The Cryosphere, 9, 2311–2321. http://doi.org/10.5194/tc-9-2311-2015
Bell, R. E., Banwell, A. F., Trusel, L. D., & Kingslake, J. (2018). Antarctic surface hydrology and impacts on ice-sheet mass balance. Nature Climate Change, 8(December), 1044–1052. https://doi.org/10.1038/s41558-018-0326-3
Borstad, C. P., Rignot, E., Mouginot, J., & Schodlok, M. P. (2013). Creep deformation and buttressing capacity of damaged ice shelves: Theory and application to Larsen C ice shelf. The Cryosphere, 7(6), 1931–1947. https://doi.org/10.5194/tc-7-1931-2013
Donat-Magnin, M., Jourdain, N. C., Gallée, H., Amory, C., Kittel, C., Fettweis, X., et al. (2020). Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica. The Cryosphere, 14(1), 229–249. https://doi.org/10.5194/tc-14-229-2020
Donat-Magnin, M., Jourdain, N. C., Kittel, C., Agosta, C., Amory, C., Gallée, H., et al. (2021). Future surface mass balance and surface melt in the Amundsen sector of the West Antarctic Ice Sheet. The Cryosphere, 15, 571–593. https://doi.org/10.5194/tc-2020-113
Favier, V., Krinner, G., Amory, C., Gallée, H., Beaumet, J., & Agosta, C. (2017). Antarctica-regional climate and surface mass budget. Current Climate Change Reports, 3(4), 303–315. https://doi.org/10.1007/s40641-017-0072-z
Fürst, J. J., Durand, G., Gillet-chaulet, F., Tavard, L., Rankl, M., Braun, M., & Gagliardini, O. (2016). The safety band of Antarctic ice shelves. Nature Climate Change, 6(5), 479–482. https://doi.org/10.1038/NCLIMATE2912
Gallée, H. (1995). Simulation of the mesocyclonic activity in the Ross Sea, Antarctica. Monthly Weather Review, 123(7), 205–2069. https://doi.org/10.1175/1520-0493(1995)123<2051:SOTMAI>2.0.CO;2
Gallée, H., & Duynkerke, P. G. (1997). Air-snow interactions and the surface energy and mass balance over the melting zone of west Greenland during the Greenland Ice Margin Experiment. Journal of Geophysical Research, 102(D12), 13813–13824. https://doi.org/10.1029/96JD03358
Gallée, H., & Gorodetskaya, I. V. (2010). Validation of a limited area model over Dome C, Antarctic Plateau, during winter. Climate Dynamics, 34(1), 61. https://doi.org/10.1007/s00382-008-0499-y
Gallée, H., Guyomarc'h, G., & Brun, E. (2001). Impact of snow drift on the Antarctic ice sheet surface mass balance: Possible sensitivity to snow-surface properties. Boundary-Layer Meteorology, 99(1), 1–19. https://doi.org/10.1023/A:1018776422809
Gallée, H., & Schayes, G. (1994). Development of a three-dimensional meso-γ primitive equation model: Katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Monthly Weather Review, 122, 671–685. https://doi.org/10.1175/1520-0493(1994)122%3C0671:DOATDM%3E2.0.CO;2
Gudmundsson, G. H., Paolo, F. S., Adusumilli, S., & Fricker, H. A. (2019). Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves. Geophysical Research Letters, 46(23), 13903–13909. https://doi.org/10.1029/2019GL085027
Hawkins, E., & Sutton, R. (2011). The potential to narrow uncertainty in projections of regional precipitation change. Climate Dynamics, 37(1), 407–418. https://doi.org/10.1007/s00382-010-0810-6
Kingslake, J., Ely, J. C., Das, I., & Bell, R. E. (2017). Widespread movement of meltwater onto and across Antarctic ice shelves. Nature, 544(7650), 349–352. https://doi.org/10.1038/nature22049
Kittel, C., Amory, C., Agosta, C., Jourdain, N. C., Hofer, S., Doutreloup, S., et al. (2021). Diverging surface mass balance projections between the Antarctic ice shelves and grounded ice sheet in 2100. The Cryosphere, 15(3), 1215–1236. https://doi.org/10.5194/tc-2020-291
Kuipers Munneke, P., Ligtenberg, S. R. M., Van Den Broeke, M. R., & Vaughan, D. G. (2014). Firn air depletion as a precursor of Antarctic ice-shelf collapse. Journal of Glaciology, 60(220), 205–214. https://doi.org/10.3189/2014JoG13J183
Kuipers Munneke, P., Luckman, A. J., Bevan, S. L., Smeets, C. J. P. P., Gilbert, E., Van Den Broeke, M. R., et al. (2018). Intense winter surface melt on an Antarctic ice shelf. Geophysical Research Letters, 45, 7615–7623. https://doi.org/10.1029/2018GL077899
Lai, C.-Y., Kingslake, J., Wearing, M. G., Chen, P.-H. C., Gentine, P., Li, H., et al. (2020). Vulnerability of Antarctica's ice shelves to meltwater-driven fracture. Nature, 584(7822), 574–578. https://doi.org/10.1038/s41586-020-2627-8
Lenaerts, J. T. M., Medley, B., Broeke, M. R., & Wouters, B. (2019). Observing and modeling ice sheet surface mass balance. Reviews of Geophysics, 57(2), 376–420. https://doi.org/10.1029/2018rg000622
Lenaerts, J. T. M., Vizcaino, M., Fyke, J., van Kampenhout, L., & van den Broeke, M. R. (2016). Present-day and future Antarctic ice sheet climate and surface mass balance in the community earth system model. Climate Dynamics, 47(5–6), 1367–1381. https://doi.org/10.1007/s00382-015-2907-4
Lhermitte, S., Sun, S., Shuman, C., Wouters, B., Pattyn, F., Wuite, J., et al. (2020). Damage accelerates ice shelf instability and mass loss in Amundsen Sea Embayment. Proceedings of the National Academy of Sciences of the United States of America, 117(40), 24735–24741. https://doi.org/10.1073/pnas.1912890117
Ligtenberg, S. R. M., van de Berg, W. J., van den Broeke, M. R., Rae, J. G. L., & van Meijgaard, E. (2013). Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Climate Dynamics, 41(3–4), 867–884. https://doi.org/10.1007/s00382-013-1749-1
Mottram, R., Hansen, N., Kittel, C., Van Wessem, M., Agosta, C., Amory, C., et al. (2021). What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates. The Cryosphere, 1–42. https://doi.org/10.5194/tc-2019-333
Paolo, F. S., Fricker, H. A., & Padman, L. (2015). Volume loss from Antarctic ice shelves is accelerating. Science, 348(6232), 327–331. https://doi.org/10.1126/science.aaa0940
Pfeffer, W. T., Meier, M. F., & Illangasekare, T. H. (1991). Retention of Greenland runoff by refreezing: Implications for projected future sea level change. Journal of Geophysical Research, 96(C12). https://doi.org/10.1029/91jc02502
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., Van Den Broeke, M. R., & Padman, L. (2012). Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484, 501–505. https://doi.org/10.1038/nature10968
Rignot, E., Casassa, G., Gogineni, P., Krabill, W., Rivera, A., & Thomas, R. (2004). Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophysical Research Letters, 31(18), 2–5. https://doi.org/10.1029/2004GL020697
Scambos, T. A., Hulbe, C., & Fahnestock, M. (2003). Climate-induced ice shelf disintegration in the Antarctic Peninsula. In E. Domack, A. Levente, A. Burnet, R. Bindschadler, P. Convey, & M. Kirby (Eds.), Antarctic peninsula climate variability: Historical and paleoenvironmental perspectives (Vol. 79, pp. 79–92). American Geophysical Union. https://doi.org/10.1029/AR079p0079
Scambos, T. A., Hulbe, C., Fahnestock, M., & Bohlander, J. (2000). The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. Journal of Glaciology, 46(154), 516–530. http://dx.doi.org/10.3189/172756500781833043
Shepherd, A., Ivins, E., Rignot, E., Smith, B., Van Den Broeke, M., Velicogna, I., et al. (2018). Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558, 219–222. https://doi.org/10.1038/s41586-018-0179-y
Souverijns, N., Gossart, A., Demuzere, M., Lenaerts, J. T. M., Medley, B., Gorodetskaya, I. V., et al. (2019). A new regional climate model for POLAR-CORDEX: Evaluation of a 30-year Hindcast with COSMO-CLM2 over Antarctica. Journal of Geophysical Research: Atmospheres, 124(3), 1405–1427. https://doi.org/10.1029/2018JD028862
Tedesco, M., Doherty, S., Fettweis, X., Alexander, P., Jeyaratnam, J., & Stroeve, J. (2016). The darkening of the Greenland ice sheet: Trends, drivers, and projections (1981–2100). The Cryosphere, 10, 477–496. https://doi.org/10.5194/tc-10-477-2016
Trusel, L. D., Frey, K. E., Das, S. B., Karnauskas, K. B., Kuipers Munneke, P., van Meijgaard, E., & van den Broeke, M. R. (2015). Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nature Geoscience, 8(12), 927–932. https://doi.org/10.1038/ngeo2563
van den Broeke, M. R. (2005). Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophysical Research Letters, 32, 2–5. https://doi.org/10.1029/2005GL023247
van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Amory, C., Birnbaum, G., et al. (2018). Modelling the climate and surface mass balance of polar ice sheets using RACMO2–Part 2: Antarctica (1979–2016). The Cryosphere, 12, 1479–1498. https://doi.org/10.5194/tc-2017-202
Barthel, A., Agosta, C., Little, C. M., Hattermann, T., Jourdain, N. C., Goelzer, H., et al. (2020). CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and Antarctica. The Cryosphere, 14(3), 855–879. https://doi.org/10.5194/tc-14-855-2020
Datta, R. T., Tedesco, M., Agosta, C., Fettweis, X., Kuipers Munneke, P., & Van Den Broeke, M. R. (2018). Melting over the northeast Antarctic peninsula (1999–2009): Evaluation of a high-resolution regional climate model. The Cryosphere, 12(9), 2901–2922. https://doi.org/10.5194/tc-12-2901-2018
De Ridder, K., & Gallée, H. (1998). Land surface-induced regional climate change in southern Israel. Journal of applied meteorology, 37(11), 1470–1485. https://doi.org/10.1175/1520-0450(1998)037<1470:LSIRCC>2.0.CO;2
Gallée, H., & Gorodetskaya, I. V. (2008). Validation of a limited area model over Dome C, Antarctic Plateau, during winter. Climate Dynamics, 34(1), 61–72. https://doi.org/10.1007/s00382-008-0499-y
Gettelman, A., Hannay, C., Bacmeister, J. T., Neale, R. B., Pendergrass, A. G., Danabasoglu, G., et al. (2019). High climate sensitivity in the community earth system model version 2 (CESM2). Geophysical Research Letters, 46(14), 8329–8337. https://doi.org/10.1029/2019GL083978
Iversen, T., Bentsen, M., Bethke, I., Debernard, J. B., Kirkevåg, A., Seland, Ø., et al. (2013). The Norwegian earth system model, NorESM1-M—Part 2: Climate response and scenario projections. Geoscientific Model Development, 6(2), 389–415. https://doi.org/10.5194/gmd-6-389-2013
Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J. F., Stouffer, R. J., et al. (2020). Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Science Advances, 6(26), 1–11. https://doi.org/10.1126/sciadv.aba1981
Palerme, C., Genthon, C., Claud, C., Kay, J. E., Wood, N. B., & L'Ecuyer, T. (2017). Evaluation of current and projected Antarctic precipitation in CMIP5 models. Climate Dynamics, 48, 225–239. https://doi.org/10.1007/s00382-016-3071-1
Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., et al. (2019). Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. Journal of Advances in Modeling Earth Systems, 11(7), 2177–2213. https://doi.org/10.1029/2019MS001683
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.