[en] Accumulation of exported macrophytodetritus (AEM) represent unique habitats formed by the dead material originating from macrophyte ecosystems (e.g., seagrass, kelp, other seaweeds). AEM can be found everywhere, from the littoral zone to the deepest canyons, and from high to low latitudes. Seagrass AEMs are among the most common detrital accumulations found in marine environments, and sometimes include macroalgae wrack that has been ripped from the substrate. In the Mediterranean Sea, Posidonia oceanica (L.) Delile litter accumulations undergo pulses of new necromass all year, particularly in autumn, when dead leaves are shed. Here, macrofauna inhabiting AEM of Calvi Bay (Corsica, France) was sampled troughout an annual cycle (four seasons). By combining gut content examination and stable isotope analysis, we aimed to assess the effect of seasonal litter pulses on the trophic ecology of the dominant macrofauna species. Litter composition showed drastic variations throughout the sampling period, with the highest leaf litter quantity and contribution to AEMs in November. Dominant detritivores, herbivores, and omnivores responded positively to this increase by ingesting more seagrass material. A Bayesian stable isotope mixing model showed that the assimilation of carbon originating from seagrasses also increased. Additionally, isotopic niche modelling showed that consumer niches shifted towards seagrass isotopic composition in November. Predators did not shift their diet, but their isotopic composition was affected by the isotopic shift of their prey, demonstrating the transfer of seagrass carbon to higher trophic levels and the shift towards dead leaf material in the entire community. This response was, therefore, a rapid (days to weeks) parallel to that of the slow (months to years) decomposition of detrital material via physical alteration and microbial decomposition. This seemingly underestimated transfer route should be better characterised to understand the role of these seagrass beds in carbon sequestration in the marine environment.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège MARE - Centre Interfacultaire de Recherches en Océanologie - ULiège
Implications of Posidonia litter accumulations, and their associated microbial and detritivorous communities, in the carbon cycle of an oligotrophic marine coastal area.
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Commentary :
All data supporting the analyses from this paper are freely available at http://www.vliz.be/ [Michel, et al. (2021) - Marine Data Archive. https://doi.org/10.14284/454]. The code underlying isotopic niches and mixing model analyses, as well as Figs. 3–5, can be freely downloaded at https://doi.org/10.5281/zenodo.3903281. Supplementary material include video and photography of investigated litter.
Boudouresque, C.F., Pergent, G., Pergent-Martini, C., Ruitton, S., Thibaut, T., Verlaque, M., The necromass of the Posidonia oceanica seagrass meadow: fate, role, ecosystem services and vulnerability. Hydrobiologia 781 (2016), 25–42.
Bouillon, S., Connolly, R.M., Carbon exchange among tropical coastal ecosystems. Ecological Connectivity Among Tropical Coastal Ecosystems, 2009, Springer Netherlands, 45–70.
Calizza, E., Costantini, M.L., Carlino, P., Bentivoglio, F., Orlandi, L., Rossi, L., Posidonia oceanica habitat loss and changes in litter-associated biodiversity organization: a stable isotope-based preliminary study. Estuar. Coast Shelf Sci. 135 (2013), 137–145.
Cardona, L., Revelles, M., Sales, M., Aguilar, A., Borrell, A., Meadows of the seagrass Posidonia oceanica are a significant source of organic matter for adjoining ecosystems. Mar. Ecol. Prog. Ser. 335 (2007), 123–131.
Cebrian, J., Variability and control of carbon consumption, export, and accumulation in marine communities. Limnol. Oceanogr. 47 (2002), 11–22.
Colombini, I., Mateo, M.A., Serrano, O., Fallaci, M., Gagnarli, E., Serrano, L., Chelazzi, L., On the role of Posidonia oceanica beach wrack for macroinvertebrates of a Tyrrhenian sandy shore. Acta Oecol. 35 (2009), 32–44.
Como, S., Magni, P., Baroli, M., Casu, D., De Falco, G., Floris, A., Comparative analysis of macrofaunal species richness and composition in Posidonia oceanica, Cymodocea nodosa and leaf litter beds. Mar. Biol. 153 (2008), 1087–1101.
Costa, V., Mazzola, A., Rossi, F., Vizzini, S., Decomposition rate and invertebrate colonization of seagrass detritus along a hydrodynamic gradient in a Mediterranean coastal basin: the Stagnone di Marsala (Italy) case study. Mar. Ecol., 40, 2019, e12570.
Crawley, K.R., Hyndes, G.A., Vanderklift, M.A., Revill, A.T., Nichols, P.D., Allochthonous brown algae are the primary food source for consumers in a temperate, coastal environment. Mar. Ecol. Prog. Ser. 376 (2009), 33–44.
De Bettignies, F., Dauby, P., Lepoint, G., Riera, P., others, Temporal succession of a macrofaunal community associated with kelp fragment accumulations in an in situ experiment. Mar. Ecol. Prog. Ser. 656 (2020), 109–121.
Duggins, D.O., Gómez-Buckley, M.C., Buckley, R.M., Lowe, A.T., Galloway, A.W.E., Dethier, M.N., Islands in the stream: kelp detritus as faunal magnets. Mar. Biol. 163 (2016), 1–10.
Filbee-Dexter, K., Wernberg, T., Norderhaug, K.M., Ramirez-Llodra, E., Pedersen, M.F., Movement of pulsed resource subsidies from kelp forests to deep fjords. Oecologia 187 (2018), 291–304.
Gallmetzer, I., Pflugfelder, B., Zekely, J., Ott, J.A., Macrofauna diversity in Posidonia oceanica detritus: distribution and diversity of mobile macrofauna in shallow sublittoral accumulations of Posidonia oceanica detritus. Mar. Biol. 147 (2005), 517–523.
Hammer, Ø., Harper, D.A.T., Ryan, P.D., Past: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4 (2001), 19–20.
Harrison, P.G., Detrital processing in seagrass systems: a review of factors affecting decay rates, remineralization and detritivory. Aquat. Bot. 35 (1989), 263–288.
Heck, K.L. Jr., Carruthers, T.J.B., Duarte, C.M., Hughes, A.R., Kendrick, G., Orth, R.J., Williams, S.W., Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. Ecosystems, 2008, 1–13.
Hyndes, G.A., Lavery, P.S., Does transported seagrass provide an important trophic link in unvegetated, nearshore areas?. Estuar. Coast Shelf Sci. 63 (2005), 633–643.
Hyndes, G.A., Nagelkerken, I., McLeod, R.J., Connolly, R.M., Lavery, P.S., Vanderklift, M.A., Mechanisms and ecological role of carbon transfer within coastal seascapes. Biol. Rev. 89 (2014), 232–254.
Ince, R., Hyndes, G.A., Lavery, P.S., Vanderklift, M.A., Marine macrophytes directly enhance abundances of sandy beach fauna through provision of food and habitat. Estuar. Coast Shelf Sci. 74 (2007), 77–86.
Jackson, A.L., Inger, R., Parnell, A.C., Bearhop, S., Comparing isotopic niche widths among and within communities: SIBER - stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80 (2011), 595–602.
Jagt, J.W.M., Deckers, M., Donovan, S.K., Fraaije, R., Goolaerts, S., van der Ham, R., Hart, M.B., Jagt-Yazykova, E.A., van Konijnenburg-van Cittert, J., Renkens, S., Latest Cretaceous storm-generated sea grass accumulations in the Maastrichtian type area, The Netherlands – preliminary observations. Proceeding f the Geologist' Association 130:5 (2019), 590–598.
Kelaher, B.P., Levinton, J.S., Variation in detrital enrichment causes spatio-temporal variation in soft-sediment assemblages. Mar. Ecol. Prog. Ser. 261 (2003), 85–97.
Levinton, J.S., Stewart, S., Effects of sediment organics, detrital input, and temperature on demography, production, and body size of a deposit feeder. Mar. Ecol. Prog. Ser. 49 (1988), 259–266.
Lopez, G.R., Levinton, J.S., Ecology of deposit-feeding animals in marine sediments. Q. Rev. Biol. 62 (1987), 235–260.
Majdi, N., Traunspurger, W., Leaf shedding affects the isotopic niches of meiofauna and macrofauna in a stream food web. Food Webs 10 (2017), 5–14.
Mancinelli, G., Sabetta, L., Basset, A., Short-term patch dynamics of macroinvertebrate colonization on decaying reed detritus in a Mediterranean lagoon (Lake Alimini Grande,Apulia, SE Italy). Mar. Biol. 148 (2005), 271–283.
Mann, K.H., Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnol. Oceanogr. 33 (1988), 910–930.
Mascart, T., De Troch, M., Remy, F., Loïc N, M., Lepoint, G., Seasonal dependence on seagrass detritus and trophic niche partitioning in four copepod eco-morphotypes. Food Webs, 16, 2018, 00083.
Mateo, M.A., Romero, J., Evaluating seagrass leaf litter decomposition: an experimental comparison between litter-bag and oxygen-uptake methods. J. Exp. Mar. Biol. Ecol. 202 (1996), 97–106.
Mateo, M.A., Romero, J., Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget. Mar. Ecol. Prog. Ser. 151 (1997), 43–53.
Mateo, M.A., Sanchez-Lizaso, J.L., Romero, J., Posidonia oceanica 'banquettes': a preliminary assessment of the relevance for meadow carbon and nutrients budget. Estuar. Coast Shelf Sci. 56 (2003), 85–90.
Michel, L., Sturaro, N., Heughebaert, A., Lepoint, G., AxIOM: amphipod crustaceans from insular Posidonia oceanica seagrass meadows. Biodivers. Data J., 4, 2016, 10109.
Michel, L.N., Dauby, P., Gobert, S., Graeve, M., Nyssen, F., Thelen, N., Lepoint, G., Dominant amphipods of Posidonia oceanica seagrass meadows display considerable trophic diversity. Mar. Ecol. 36 (2015), 969–981.
Moissette, P., Koskeridou, E., Cornee, J.-J., Guillocheau, F., Lecuyer, C., Spectacular preservation of seagrasses and seagrass-associated communities from the Pliocene of Rhodes, Greece. Palaios 22 (2007), 200–211.
Norkko, A., Thrush, S.F., Cummings, V.J., Funnell, G.A., Schwarz, A.M., Andrew, N.L., Hawes, I., Ecological role of Phyllophora antarctica drift accumulations in coastal soft-sediment communities of McMurdo Sound, Antarctica. Polar Biol. 27 (2004), 482–494.
Ortega, A., Geraldi, N.R., Alam, I., Kamau, A.A., Acinas, S.G., Logares, R., Gasol, J.M., Massana, R., Krause-Jensen, D., Duarte, C.M., Important contribution of macroalgae to oceanic carbon sequestration. Nat. Geosci. 12 (2019), 748–754.
Ostfeld, R.S., Keesing, F., Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol. Evol. 15 (2000), 232–237.
Parnell, A.C., Inger, R., Bearhop, S., Jackson, A.L., Source partitioning using stable isotopes: coping with too much variation. PloS One, 5, 2010, e9672.
R Core Team. R: A Language and Environment for Statistical Computing. 2020, R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org/.
Remy, F., Darchambeau, F., Melchior, A., Lepoint, G., Impact of food type on respiration, fractionation and turnover of carbon and nitrogen stable isotopes in the marine amphipod Gammarus aequicauda (Martynov, 1931). J. Exp. Mar. Biol. Ecol. 486 (2017), 358–367.
Remy, F., Gobert, S., Lepoint, G., Effects of an experimental resource pulse on the macrofaunal assemblage inhabiting seagrass macrophytodetritus. Belg. J. Zool. 147 (2017), 1–15.
Remy, F., Mascart, T., De Troch, M., Michel, L.N., Lepoint, G., Seagrass organic matter transfer in Posidonia oceanica macrophytodetritus accumulations. Estuar. Coast Shelf Sci. 212 (2018), 73–79.
Ricart, A.M., Dalmau, A., Pérez, M., Romero, J., Effects of landscape configuration on the exchange of materials in seagrass ecosystems. Mar. Ecol. Prog. Ser. 532 (2015), 89–100.
Romero, J., Pergent, G., Pergentmartini, C., Mateo, M.A., Regnier, C., The detrital comportment in a Posidonia oceanica meadow - litter feature, decomposition rates, and mineral stocks. Marine Ecology-Pubblicazioni Della Stazione Zoologica Di Napoli I 13 (1992), 69–83.
Samadi, S., Corbari, L., Lorion, J., Hourdez, S., Haga, T., Dupont, J., Boisselier, M.C., De Forges, B.R., Biodiversity of deep-sea organisms associated with sunken-wood or other organic remains sampled in the tropical Indo-Pacific. Cah. Biol. Mar. 51 (2010), 459–466.
Simeone, S., De Falco, G., Morphology and composition of beach-cast Posidonia oceanica litter on beaches with different exposures. Geomorphology 151–152 (2012), 224–233.
Simeone, S., De Muro, S., De Falco, G., Seagrass berm deposition on a Mediterranean embayed beach. Estuar. Coast Shelf Sci. 135 (2013), 171–181.
Vetter, E.W., Dayton, P.K., Macrofaunal communities within and adjacent to a detritus-rich submarine canyon system. Deep-Sea Res. Part II Top. Stud. Oceanogr. 45 (1998), 25–54.
Wallace, J.B., Eggert, S.L., Meyer, J.L., Webster, J.R., Effects of resource limitation on a detrital-based ecosystem. Ecol. Monogr. 69 (1999), 409–442.
Wilson, S., Bellwood, D.R., Cryptic dietary components of territorial damselfishes (Pomacentridae, Labroidei). Mar. Ecol. Prog. Ser. 153 (1997), 299–310.
Wolff, T., Utilization of seagrass in the deep sea. Aquat. Bot. 2 (1976), 161–174.
Yang, L.H., Bastow, J.L., Spence, K.O., Wright, A.N., What can we learn from resource pulses. Ecology 89 (2008), 621–634.