LOVINFOSSE, Pierre ; Centre Hospitalier Universitaire de Liège - CHU > Département de Physique Médicale > Service médical de médecine nucléaire et imagerie onco
Hustinx, Roland ; Université de Liège - ULiège > Département des sciences cliniques > Médecine nucléaire
Couturier, Olivier-François; Inserm UMR_S 1232–TEAM 17 CRCINA, service de médecine nucléaire, université d'Angers, université de Polynésie Française, institut de biologie en santé–IRIS, CHU d'Angers – France, avenue Général-de-Gaulle, BP1640, Pirae, 98716, French Polynesia, Inserm UMR_S 1232–TEAM 17 CRCINA, service de médecine nucléaire, université d'Angers, université de Polynésie Française, institut de biologie en santé–IRIS, CHU d'Angers – France, centre hospitalier de Polynésie française, avenue Général-de-Gaulle, BP1640, Pirae, 98716, French Polynesia
Language :
French
Title :
TEP/TDM multi-phase: revue de la littérature
Alternative titles :
[en] TEP/CT multi phase in oncology: A literature review
Publication date :
2021
Journal title :
Médecine Nucléaire: Imagerie Fonctionnelle et Métabolique
Rigo, P., Paulus, P., Kaschten, B.J., et al. Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose. Eur J Nucl Med 23 (1996), 1641–1674.
Mahajan, A., Cook, G., Clinical Applications of PET/CT in Oncology. Basic Science of PET Imaging. 2017.
Brown, R.S., Wahl, R.L., Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer 72 (1993), 2979–2985.
Younes, M., Lechago, L.V., Somoano, J.R., et al. Wide expression of the human erythrocyte glucose transporter Glut1 in human cancers. Cancer Res 56 (1996), 1164–1167.
Pauwels, E.K., Ribeiro, M.J., Stoot, J.H., et al. FDG accumulation and tumor biology. Nucl Med Biol 25 (1998), 317–322.
Strauss, L.G., Fluorine-18 deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients. Eur J Nucl Med 23 (1996), 1409–1415.
Gallagher, B.M., Ansari, A., Atkins, H., et al, Radiopharmaceuticals XXVII. 18F-labeled 2-deoxy-2-fluoro-d-glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo: tissue distribution and imaging studies in animals. J Nucl Med 18 (1977), 990–996.
Cheng, G., Alavi, A., Lim, E., et al. Dynamic changes of FDG captation and clearance in normal tissues. Mol Imaging Biol 15 (2013), 345–352.
Cheng, G., Alavi, A., Lee, N.J., et al. Differential background clearance of fluorodeoxyglucose activity in normal tissues and its clinical significance. PET Clin 9 (2014), 209–216.
Yamada, S., Kubota, K., Kubota, R., et al. High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J Nucl Med 36 (1995), 1301–1306.
Hustinx, R., Smith, R.J., Benard, F., et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med 26 (1999), 1345–1348.
Lodge, M.A., Lucas, J.D., Marsden, P.K., et al. A PET study of 18FDG captation in soft tissue masses. Eur J Nucl Med 26 (1999), 22–30.
Higashi, T., Saga, T., Nakamoto, Y., et al. Relationship between retention index in dual-phase (18)F-FDG PET, and hexokinase-II and glucose transporter-1 expression in pancreatic cancer. J Nucl Med 43 (2002), 173–180.
Matthies, A., Hickeson, M., Cuchiara, A., et al. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med 43 (2002), 871–875.
Nunez, R., Kalapparambath, A., Varela, J., Improvement in sensitivity with delayed imaging of pulmonary lesions with FDG-PET. Rev Esp Med Nucl 26 (2007), 196–207.
Xiu, Y., Bhutani, C., Dhurairaj, T., et al. Dual-time point FDG PET imaging in the evaluation of pulmonary nodules with minimally increased metabolic activity. Clin Nucl Med 32 (2007), 101–105.
Alkhawaldeh, K., Bural, G., Kumar, R., et al. Impact of dual-time-point (18)F-FDG PET imaging and partial volume correction in the assessment of solitary pulmonary nodules. Eur J Nucl Med Mol Imaging 35 (2008), 246–252.
Chen, C.J., Lee, B.J., Yao, W.J., et al. Dual-phase 18F-FDG PET in the diagnosis of pulmonary nodules with an initial standard captation value less than 2.5. AJR Am J Roentgenol 191 (2008), 475–479.
Lan, X.L., Zhang, Y.X., Wu, Z.J., et al. The value of dual time point (18)F-FDG PET imaging for the differentiation between malignant and benign lesions. Clin Radiol 63 (2008), 756–764.
Kim, I.J., Kim, S.J., Kim, Y.S., et al. Characterization of pulmonary lesions with low F-18 FDG captation using double phase F-18 FDG PET/CT: comparison of visual and quantitative analyses. Neoplasma 56 (2009), 33–39.
Laffon, E., de Clermont, H., Begueret, H., et al. Assessment of dual-time-point 18F-FDG-PET imaging for pulmonary lesions. Nucl Med Commun 30 (2009), 455–461.
Schillaci, O., Travascio, L., Bolacchi, F., et al. Accuracy of early and delayed FDG PET-CT and of contrast-enhanced CT in the evaluation of lung nodules: a preliminary study on 30 patients. Radiol Med 114 (2009), 890–906.
Suga, K., Kawakami, Y., Hiyama, A., et al. Dual-time point 18F-FDG PET/CT scan for differentiation between 18F-FDG-avid non-small cell lung cancer and benign lesions. Ann Nucl Med 23 (2009), 427–435.
Cloran, F.J., Banks, K.P., Song, W.S., et al. Limitations of dual time point PET in the assessment of lung nodules with low FDG avidity. Lung Cancer 68 (2010), 66–71.
Sathekge, M.M., Maes, A., Pottel, H., et al. Dual time-point FDG PET-CT for differentiating benign from malignant solitary pulmonary nodules in a TB endemic area. S Afr Med J 100 (2010), 598–601.
Macdonald, K., Searle, J., Lyburn, I., The role of dual time point FDG PET imaging in the evaluation of solitary pulmonary nodules with an initial standard captation value less than 2.5. Clin Radiol 66 (2011), 244–250.
Kaneko, K., Sadashima, E., Irie, et al, Assessment of FDG retention differences between the FDG-avid benign pulmonary lesion and primary lung cancer using dual-time-point FDG-PET imaging. Ann Nucl Med 27 (2013), 392–399.
Khan, A.N., Al-Jahdali, H., Value of delayed 18F-FDG PET in the diagnosis of solitary pulmonary nodule. J Thorac Dis 5 (2013), 373–374.
Cheng, G., Alavi, A., Werner, T.J., et al. Serial changes of FDG captation and diagnosis of suspected lung malignancy: a lesion-based analysis. Clin Nucl Med 39 (2014), 147–155.
Chen, S., Li, X., Chen, M., et al. Limited diagnostic value of Dual-Time-Point (18)F-FDG PET/CT imaging for classifying solitary pulmonary nodules in granuloma-endemic regions both at visual and quantitative analyses. Eur J Radiol 85 (2016), 1744–1749.
Huang, Y.E., Huang, Y.J., Ko, M., et al. Dual-time-point (18)F-FDG PET/CT in the diagnosis of solitary pulmonary lesions in a region with endemic granulomatous diseases. Ann Nucl Med 30 (2016), 652–658.
Chen, S., Harmon, S., Perk, T., et al. Diagnostic classification of solitary pulmonary nodules using dual time (18)F-FDG PET/CT image texture features in granuloma-endemic regions. Sci Rep, 7, 2017, 9370.
Pahk, K., Chung, J.H., Kim, S., et al. Predictive value of dual-time (18)F-FDG PET/CT to distinguish primary lung and metastatic adenocarcinoma in solitary pulmonary nodule. Tumori 104 (2018), 207–212.
Barger, R.L. Jr., Nandalur, K.R., Diagnostic performance of dual-time 18F-FDG PET in the diagnosis of pulmonary nodules: a meta-analysis. Acad Radiol 19 (2012), 153–158.
Zhang, L., Wang, Y., Lei, J., et al. Dual time point 18FDG-PET/CT versus single time point 18FDG-PET/CT for the differential diagnosis of pulmonary nodules: a meta-analysis. Acta Radiol 54 (2013), 770–777.
Zhao, M., Ma, Y., Yang, B., et al. A meta-analysis to evaluate the diagnostic value of dual-time-point F-fluorodeoxyglucose positron emission tomography/computed tomography for diagnosis of pulmonary nodules. J Cancer Res Ther 12 (2016), C304–C308.
Uesaka, D., Demura, Y., Ishizaki, T., et al. Evaluation of dual-time-point 18F-FDG PET for bilan d'extensionin patients with lung cancer. J Nucl Med 49 (2008), 1606–1612.
Suga, K., Kawakami, Y., Hiyama, A., et al. Differential diagnosis between (18)F-FDG-avid metastatic lymph nodes in non-small cell lung cancer and benign nodes on dual-time point PET/CT scan. Ann Nucl Med 23 (2009), 523–531.
Li, M., Wu, N., Liu, Y., et al. Regional nodal bilan d'extensionwith 18F-FDG PET-CT in non-small cell lung cancer: Additional diagnostic value of CT attenuation and dual-time-point imaging. Eur J Radiol 81 (2012), 1886–1890.
Yen, R.F., Chen, K.C., Lee, J.M., et al. 18F-FDG PET for the lymph node bilan d'extensionof non-small cell lung cancer in a tuberculosis-endemic country: is dual time point imaging worth the effort?. Eur J Nucl Med Mol Imaging 35 (2008), 1305–1315.
Nishiyama, Y., Yamamoto, Y., Kimura, N., et al. Dual-time-point FDG-PET for evaluation of lymph node metastasis in patients with non-small-cell lung cancer. Ann Nucl Med 22 (2008), 245–250.
Shinya, T., Rai, K., Okumura, Y., et al. Dual-time-point F-18 FDG PET/CT for evaluation of intrathoracic lymph nodes in patients with non-small cell lung cancer. Clin Nucl Med 34 (2009), 216–221.
Kasai, T., Motoori, K., Horikoshi, T., et al. Dual-time point scanning of integrated FDG PET/CT for the evaluation of mediastinal and hilar lymph nodes in non-small cell lung cancer diagnosed as operable by contrast-enhanced CT. Eur J Radiol 75 (2010), 143–146.
Kim, S.J., Kim, Y.K., Kim, I.J., et al. Limited predictive value of dual-time-point F-18 FDG PET/CT for evaluation of pathologic N1 status in NSCLC patients. Clin Nucl Med 36 (2011), 434–439.
Rogasch, J.M., Steffen, I.G., Riedel, S., et al. Dual time point imaging for F18-FDG-PET/CT does not improve the accuracy of nodal bilan d'extensionin non-small cell lung cancer patients. Eur Radiol 26 (2016), 2808–2818.
Shen, G., Deng, H., Hu, S., et al. Potential performance of dual-time-point 18F-FDG PET/CT compared with single-time-point imaging for differential diagnosis of metastatic lymph nodes: a meta-analysis. Nucl Med Commun 35 (2014), 1003–1010.
Houseni, M., Chamroonrat, W., Zhuang, J., et al. Prognostic implication of dual-phase PET in adenocarcinoma of the lung. J Nucl Med 51 (2010), 535–542.
Satoh, Y., Nambu, A., Onishi, H., et al. Value of dual time point F-18 FDG-PET/CT imaging for the evaluation of prognosis and risk factors for recurrence in patients with stage I non-small cell lung cancer treated with stereotactic body radiation therapy. Eur J Radiol 81 (2012), 3530–3534.
Shimizu, K., Okita, R., Saisho, S., et al. Clinical significance of dual-time-point 18F-FDG PET imaging in resectable non-small cell lung cancer. Ann Nucl Med 29 (2015), 854–860.
Kim, S.J., Kim, Y.K., Kim, I.J., et al. Limited prognostic value of dual time point F-18 FDG PET/CT in patients with early stage (stage I & II) non-small cell lung cancer (NSCLC). Radiother Oncol 98 (2011), 105–108.
Jin, F., Zhu, H., Fu, Z., et al. Prognostic value of the standardized captation value maximum change calculated by dual-time-point (18)F-fluorodeoxyglucose positron emission tomography imaging in patients with advanced non-small-cell lung cancer. Onco Targets Ther 9 (2016), 2993–2999.
Lafuente, S., Fuster, D., Arguis, P., et al. Dual time-point (18)F-FDG PET/CT to assess response to radiofrequency ablation of lung metastases. Rev Esp Med Nucl Imagen Mol 35 (2016), 226–231.
Boerner, A.R., Weckesser, M., Herzog, H., et al. Optimal scan time for fluorine-18 fluorodeoxyglucose positron emission tomography in breast cancer. Eur J Nucl Med 26 (1999), 226–230.
Kumar, R., Loving, V.A., Chauhan, A., et al. Potential of dual-time-point imaging to improve breast cancer diagnosis with (18)F-FDG PET. J Nucl Med 46 (2005), 1819–1824.
Zytoon, A.A., Murakami, K., El-Kholy, M.R., et al. Breast cancer with low FDG uptake: characterization by means of dual-time point FDG-PET/CT. Eur J Radiol 70 (2009), 530–538.
Imbriaco, M., Caprio, M.G., Limite, G., et al. Dual-time-point 18F-FDG PET/CT versus dynamic breast MRI of suspicious breast lesions. AJR Am J Roentgenol 191 (2008), 1323–1330.
Caprio, M.G., Cangiano, A., Imbriaco, M., et al. Dual-time-point [18F]-FDG PET/CT in the diagnostic evaluation of suspicious breast lesions. Radiol Med 115 (2010), 215–224.
Suga, K., Kawakami, Y., Hiyama, A., et al. Differentiation of FDG-avid loco-regional recurrent and compromised benign lesions after surgery for breast cancer with dual-time point F-18-fluorodeoxy-glucose PET/CT scan. Ann Nucl Med 23 (2009), 399–407.
Hildebrandt, M.G., Gerke, O., Baun, C., et al. [18F]Fluorodeoxyglucose (FDG)-Positron Emission Tomography (PET)/Computed Tomography (CT) in Suspected Recurrent Breast Cancer: A Prospective Comparative Study of Dual-Time-Point FDG-PET/CT, Contrast-Enhanced CT, and Bone Scintigraphy. J Clin Oncol 34 (2016), 1889–1897.
Matthiessen, L.W., Johannesen, H.H., Skougaard, K., et al. Dual time point imaging fluorine-18 flourodeoxyglucose positron emission tomography for evaluation of large loco-regional recurrences of breast cancer treated with electrochemotherapy. Radiol Oncol 47 (2013), 358–365.
Mavi, A., Urhan, M., Yu, J.Q., et al. Dual time point 18F-FDG PET imaging detects breast cancer with high sensitivity and correlates well with histologic subtypes. J Nucl Med 47 (2006), 1440–1446.
Zytoon, A.A., Murakami, K., El-Kholy, M.R., et al. Dual time point FDG-PET/CT imaging. Potential tool for diagnosis of breast cancer. Clin Radiol 63 (2008), 1213–1227.
Basu, S., Chen, W., Tchou, J., et al. Comparison of triple-negative and estrogen receptor-positive/progesterone receptor-positive/HER2-negative breast carcinoma using quantitative fluorine-18 fluorodeoxyglucose/positron emission tomography imaging parameters: a potentially useful method for disease characterization. Cancer 112 (2008), 995–1000.
Garcia Vicente, A.M., Soriano Castrejon, A., Relea Calatayud, F., et al. 18F-FDG semi-quantitative parameters and biological prognostic factors in locally advanced breast cancer. Rev Esp Med Nucl Imagen Mol 31 (2012), 308–314.
Garcia Vicente, A.M., Soriano Castrejon, A., Leon Martin, A., et al. Molecular subtypes of breast cancer: metabolic correlation with (1)(8)F-FDG PET/CT. Eur J Nucl Med Mol Imaging 40 (2013), 1304–1311.
Garcia-Vicente, A.M., Perez-Beteta, J., Perez-Garcia, V.M., et al. Metabolic Tumor Burden Assessed by Dual Time Point [(18)F]FDG PET/CT in Locally Advanced Breast Cancer: Relation with Tumor Biology. Mol Imaging Biol 19 (2017), 636–644.
Chang, C.C., Tu, H.P., Chen, Y.M., et al. Tumour and lymph node uptakes on dual-phased 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography correlate with prognostic parameters in breast cancer. J Int Med Res 42 (2014), 1209–1221.
Ozen, A., Altinay, S., Ekmekcioglu, O., et al. Dual-Time (18)F-FDG PET/CT Imaging in Initial Locoregional Bilan d'extensionof Breast Carcinoma: Comparison with Conventional Imaging and Pathological Prognostic Factors. Indian J Surg 78 (2016), 382–389.
Moon, H., Noh, W.C., Kim, H.A., et al. The Relationship Between Estrogen Receptor, Progesterone Receptor and Human Epidermal Growth Factor Receptor 2 Expression of Breast Cancer and the Retention Index in Dual Phase (18)F-FDG PET/CT. Nucl Med Mol Imaging 50 (2016), 246–254.
Kaida, H., Azuma, K., Toh, U., et al. Correlations between dual-phase 18F-FDG captation and clinicopathologic and biological markers of breast cancer. Hell J Nucl Med 21 (2018), 35–42.
Sasada, S., Masumoto, N., Suzuki, E., et al. Prediction of biological characteristics of breast cancer using dual-phase FDG PET/CT. Eur J Nucl Med Mol Imaging 46 (2019), 831–837.
Choi, W.H., Yoo, I.R., O, J.H., et al. The value of dual-time-point 18F-FDG PET/CT for identifying axillary lymph node metastasis in breast cancer patients. Br J Radiol 84 (2011), 593–599.
Hahn, S., Hecktor, J., Grabellus, F., et al. Diagnostic accuracy of dual-time-point 18F-FDG PET/CT for the detection of axillary lymph node metastases in breast cancer patients. Acta Radiol 53 (2012), 518–523.
Garcia Vicente, A.M., Soriano Castrejon, A., Cruz Mora, M.A., et al. Dual time point 2-deoxy-2-[18F]fluoro-D-glucose PET/CT: nodal bilan d'extensionin locally advanced breast cancer. Rev Esp Med Nucl Imagen Mol 33 (2014), 1–5.
Harirchian, S., Kuperan, A., Ghesani, N., et al. Dual Time Point PET Imaging in Head and Neck Squamous Cell Carcinoma. J Otol Rhinol 2 (2013), 1–6.
Pietrzak, A.K., Kazmierska, J., Marszalek, A., et al. Evaluation of physiologic and abnormal glucose captation in palatine tonsils: differential diagnostics with sequential dual-time-point 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography examinations. Q J Nucl Med Mol Imaging 64 (2018), 299–306.
Nakamura, S., Okochi, K., Kurabayashi, T., Dual-time-point fluorodeoxyglucose positron emission tomography for diagnosis of cervical lymph node metastases in patients with head and neck squamous cell carcinoma. J Comput Assist Tomogr 35 (2011), 303–307.
Yen, T.C., Chang, Y.C., Chan, S.C., et al. Are dual-phase 18F-FDG PET scans necessary in nasopharyngeal carcinoma to assess the primary tumour and loco-regional nodes?. Eur J Nucl Med Mol Imaging 32 (2005), 541–548.
Zhuang, H., Hustinx, R., Alavi, A., Effect of diazepam on the efficacy of dual-phase FDG PET imaging. Eur J Nucl Med Mol Imaging 33 (2006), 228–229 [author reply 230].
Toda, K., Toriihara, A., Nakagawa, K., et al. Time Dependency of Volume-Based Metabolic Parameters Obtained by Dual-Time-Point TOF-PET/CT for Head and Neck Squamous Cell Cancer. Int J Radiat Oncol 99:2, Supplement 1 (2017), E377–E378.
Sanghera, B., Wong, W.L., Lodge, M.A., et al. Potential novel application of dual time point SUV measurements as a predictor of survival in head and neck cancer. Nucl Med Commun 26 (2005), 861–867.
Abgral, R., Le Roux, P.Y., Rousset, J., et al. Prognostic value of dual-time-point 18F-FDG PET-CT imaging in patients with head and neck squamous cell carcinoma. Nucl Med Commun 34 (2013), 551–556.
Yonezawa, N., Minamikawa, T., Kitajima, K., et al. The maximum standardized captation value increment calculated by dual-time-point (18)F-fluorodeoxyglucose positron emission tomography predicts survival in patients with oral tongue squamous cell carcinoma. Nagoya J Med Sci 79 (2017), 189–198.
Kuwabara, H., Toriihara, A., Yuasa-Nakagawa, K., et al. Prognostic value of metabolic tumor burden calculated using dual-time-point 18F-fluorodeoxyglucose positron emission tomography/CT in patients with oropharyngeal or hypopharyngeal cancer. Head Neck 41 (2019), 103–109.
Naganawa, S., Yoshikawa, T., Yasaka, K., et al. Role of delayed-time-point imaging during abdominal and pelvic cancer screening using FDG-PET/CT in the general population. Medicine (Baltimore), 96, 2017, e8832.
Hu, Q., Wang, W., Zhong, X., et al. Dual-time-point FDG PET for the evaluation of locoregional lymph nodes in thoracic esophageal squamous cell cancer. Eur J Radiol 70 (2009), 320–324.
Park, S., Paeng, J.C., Kang, C.H., et al. Dual-time point (18)F-FDG PET/CT for the bilan d'extensionof oesophageal cancer: the best diagnostic performance by retention index for N-bilan d'extensionin non-calcified lymph nodes. Eur J Nucl Med Mol Imaging 45 (2018), 1317–1328.
Shum, W.Y., Hsieh, T.C., Yeh, J.J., et al. Clinical usefulness of dual-time FDG PET-CT in assessment of esophageal squamous cell carcinoma. Eur J Radiol 81 (2012), 1024–1028.
Shen, D.H., Chang, T.H., Lin, M.H., et al. Dual-time-point PET/CT to differentiate fluorodeoxyglucose-avid hiatal hernia from mediastinal malignancy. Clin Nucl Med 31 (2006), 492–496.
Kim, S.K., Shin, J.E., Lee, J.H., Peripheral Tuberculous Lymphadenitis Masquerading as Metastatic Gastric Carcinoma on F-18 FDG Dual Time Point PET/CT. Nucl Med Mol Imaging 46 (2012), 316–317.
Sun, X., Li, Y., Dong, M., et al. Hepatoid adenocarcinoma of the stomach: dual-time-point (18)F-FDG PET/CT findings. Jpn J Radiol 32 (2014), 721–724.
Cui, J., Zhao, P., Ren, Z., et al. Evaluation of Dual Time Point Imaging 18F-FDG PET/CT in Differentiating Malignancy From Benign Gastric Disease. Medicine (Baltimore), 94, 2015, e1356.
Sa, R., Zhao, H.G., Dai, Y.Y., et al. The role of dual time point PET/CT for distinguishing malignant from benign focal 18F-FDG captation duodenal lesions. Medicine (Baltimore), 97, 2018, e12521.
Nakamoto, Y., Higashi, T., Sakahara, H., et al. Delayed (18)F-fluoro-2-deoxy-D-glucose positron emission tomography scan for differentiation between malignant and benign lesions in the pancreas. Cancer 89 (2000), 2547–2554.
Lyshchik, A., Higashi, T., Nakamoto, Y., et al. Dual-phase 18F-fluoro-2-deoxy-D-glucose positron emission tomography as a prognostic parameter in patients with pancreatic cancer. Eur J Nucl Med Mol Imaging 32 (2005), 389–397.
Okano, K., Kakinoki, K., Akamoto, S., et al. 18F-fluorodeoxyglucose positron emission tomography in the diagnosis of small pancreatic cancer. World J Gastroenterol 17 (2011), 231–235.
Saito, M., Ishihara, T., Tada, M., et al. Use of F-18 fluorodeoxyglucose positron emission tomography with dual-phase imaging to identify intraductal papillary mucinous neoplasm. Clin Gastroenterol Hepatol 11 (2013), 181–186.
Santhosh, S., Mittal, B.R., Bhasin, D., et al. Dual-phase 18F-FDG PET/CT imaging in the characterization of pancreatic lesions: does it offer prognostic information?. Nucl Med Commun 35 (2014), 1018–1025.
Xi, Y., Guo, R., Hu, J., et al. 18F-fluoro-2-deoxy-D-glucose retention index as a prognostic parameter in patients with pancreatic cancer. Nucl Med Commun 35 (2014), 1112–1118.
Kawada, N., Uehara, H., Hosoki, T., et al. Usefulness of dual-phase 18F-FDG PET/CT for diagnosing small pancreatic tumors. Pancreas 44 (2015), 655–659.
Mena, E., Sheikhbahaei, S., Taghipour, M., et al. 18F-FDG PET/CT Metabolic Tumor Volume and Intratumoral Heterogeneity in Pancreatic Adenocarcinomas: Impact of Dual-Time Point and Segmentation Methods. Clin Nucl Med 42 (2017), e16–e21.
Zanoni, L., Zompatori, M., Scalorbi, F., et al. The Wandering Mesenteric Lymph Node: Delayed 68Ga-DOTANOC PET/CT Imaging to Overcome a Potential Pitfall. Clin Nucl Med 42 (2017), e253–e254.
Jiang, L., Tang, Q., Panje, C.M., et al. Assessment of pancreatic colloid carcinoma using (18)F-FDG PET/CT compared with MRI and enhanced CT. Oncol Lett 16 (2018), 1557–1564.
Leroy-Freschini, B., Amodru, V., Addeo, P., et al. Early (18)F-FDOPA PET/CT imaging after carbidopa premedication as a valuable diagnostic option in patients with insulinoma. Eur J Nucl Med Mol Imaging 46 (2019), 686–699.
Koyama, K., Okamura, T., Kawabe, J., et al. The usefulness of 18F-FDG PET images obtained 2 hours after intravenous injection in liver tumor. Ann Nucl Med 16 (2002), 169–176.
Kuker, R.A., Mesoloras, G., Gulec, S.A., Optimization of FDG-PET/CT imaging protocol for evaluation of patients with primary and metastatic liver disease. Int Semin Surg Oncol, 4, 2007, 17.
Lin, W.Y., Tsai, S.C., Hung, G.U., Value of delayed 18F-FDG-PET imaging in the detection of hepatocellular carcinoma. Nucl Med Commun 26 (2005), 315–321.
Wu, B., Zhao, Y., Zhang, Y., et al. Does dual-time-point (18)F-FDG PET/CT scan add in the diagnosis of hepatocellular carcinoma?. Hell J Nucl Med 20 (2017), 79–82.
Oksuzoglu, K., Ones, T., Ozguven, S., et al. Change in standardized captation values in delayed 18F-FDG positron emission tomography images in hepatocellular carcinoma. Medicine (Baltimore), 97, 2018, e12817.
Kitapci, M.T., Akkas, B.E., Gullu, I., et al. FDG-PET/CT in the evaluation of epithelioid hemangioendothelioma of the liver: the role of dual-time-point imaging. A case presentation and review of the literature. Ann Nucl Med 24 (2010), 549–553.
Huo, L., Wu, Z., Zhuang, H., et al. Dual time point C-11 acetate PET imaging can potentially distinguish focal nodular hyperplasia from primary hepatocellular carcinoma. Clin Nucl Med 34 (2009), 874–877.
Huo, L., Dang, Y., Lv, J., et al. Application of dual phase imaging of 11C-acetate positron emission tomography on differential diagnosis of small hepatic lesions. PLoS One, 9, 2014, e96517.
Arena, V., Skanjeti, A., Casoni, R., et al. Dual-phase FDG-PET: delayed acquisition improves hepatic detectability of pathological uptake. Radiol Med 113 (2008), 875–886.
Dirisamer, A., Halpern, B.S., Schima, W., et al. Dual-time-point FDG-PET/CT for the detection of hepatic metastases. Mol Imaging Biol 10 (2008), 335–340.
Lee, J.W., Kim, S.K., Lee, S.M., et al. Detection of hepatic metastases using dual-time-point FDG PET/CT scans in patients with colorectal cancer. Mol Imaging Biol 13 (2011), 565–572.
Annovazzi, A., Rea, S., Vici, P., et al. Dual-time 18F-FDG PET/CT for the detection of liver metastases in breast cancer. Nucl Med Commun 39 (2018), 1183–1189.
Mao, W., Zhou, J., Zhang, H., et al. Relationship between KRAS mutations and dual time point (18)F-FDG PET/CT imaging in colorectal liver metastases. Abdom Radiol (NY) 44 (2019), 2059–2066.
Nishiyama, Y., YamamotoF Y., FukunagaF K., et al. Dual-time-point 18F-FDG PET for the evaluation of gallbladder carcinoma. J Nucl Med 47 (2006), 633–638.
Choi, E.K., Yoo, I.E.R.E., Kim, S.H., et al. The clinical value of dual-time point 18F-FDG PET/CT for differentiating extrahepatic cholangiocarcinoma from benign disease. Clin Nucl Med 38 (2013), e106–e111.
Toriihara, A., Yoshida, K., Umehara, I., et al. Normal variants of bowel FDG captation in dual-time-point PET/CT imaging. Ann Nucl Med 25 (2011), 173–178.
Miyake, K.K., Nakamoto, Y., Togashi, K., Dual-time-point 18F-FDG PET/CT in patients with colorectal cancer: clinical value of early delayed scanning. Ann Nucl Med 26 (2012), 492–500.
Lee, J.H., Lee, W.A., Park, S.G., et al. Relationship Between Dual-Time Point FDG PET and Immunohistochemical Parameters in Preoperative Colorectal Cancer: Preliminary Study. Nucl Med Mol Imaging 46 (2012), 48–56.
Yoon, H.J., Kim, S.K., Kim, T.S., et al. New application of dual point 18F-FDG PET/CT in the evaluation of neoadjuvant chemoradiation response of locally advanced rectal cancer. Clin Nucl Med 38 (2013), 7–12.
Nakamoto, Y., Ishimori, T., Sano, K., et al. Clinical efficacy of dual-phase scanning using (68)Ga-DOTATOC-PET/CT in the detection of neuroendocrine tumours. Clin Radiol, 71, 2016 1069 e1-5.
Onishi, R., Noguchi, M., Kaida, H., et al. Assessment of cell proliferation in renal cell carcinoma using dual-phase (18)F-fluorodeoxyglucose PET/CT. Oncol Lett 10 (2015), 822–828.
Subramanyam, P., Palaniswamy, S.S., Dual Time Point (18)F-FDG PET/CT Imaging Identifies Bilateral Renal Tuberculosis in an Immunocompromised Patient with an Unknown Primary Malignancy. Infect Chemother 47 (2015), 117–119.
Mortensen, M.A., Vilstrup, M.H., Poulsen, M.H., et al. A prospective study on dual time (18)F-FDG-PET/CT in high-risk prostate cancer patients. BMC Res Notes, 11, 2018, 871.
Kabasakal, L., Demirci, E., Ocak, M., et al. Evaluation of PSMA PET/CT imaging using a 68Ga-HBED-CC ligand in patients with prostate cancer and the value of early pelvic imaging. Nucl Med Commun 36 (2015), 582–587.
Afshar-Oromieh, A., Hetzheim, H., Kubler, W., et al. Radiation dosimetry of (68)Ga-PSMA-11 (HBED-CC) and preliminary evaluation of optimal imaging timing. Eur J Nucl Med Mol Imaging 43 (2016), 1611–1620.
Derlin, T., Weiberg, D., von Klot, C., et al. (68)Ga-PSMA I&T PET/CT for assessment of prostate cancer: evaluation of image quality after forced diuresis and delayed imaging. Eur Radiol 26 (2016), 4345–4353.
Sachpekidis, C., Eder, M., Kopka, K., et al. (68)Ga-PSMA-11 dynamic PET/CT imaging in biochemical relapse of prostate cancer. Eur J Nucl Med Mol Imaging 43 (2016), 1288–1299.
Sahlmann, C.O., Meller, B., Bouter, C., et al. Biphasic (6)(8)Ga-PSMA-HBED-CC-PET/CT in patients with recurrent and high-risk prostate carcinoma. Eur J Nucl Med Mol Imaging 43 (2016), 898–905.
Afshar-Oromieh, A., Sattler, L.P., Mier, W., et al. The Clinical Impact of Additional Late PET/CT Imaging with (68)Ga-PSMA-11 (HBED-CC) in the Diagnosis of Prostate Cancer. J Nucl Med 58 (2017), 750–755.
Schmuck, S., Nordlohne, S., von Klot, C.A., et al. Comparison of standard and delayed imaging to improve the detection rate of [(68)Ga]PSMA I&T PET/CT in patients with biochemical recurrence or prostate-specific antigen persistence after primary therapy for prostate cancer. Eur J Nucl Med Mol Imaging 44 (2017), 960–968.
Uprimny, C., Kroiss, A.S., Fritz, J., et al. Early PET imaging with [68]Ga-PSMA-11 increases the detection rate of local recurrence in prostate cancer patients with biochemical recurrence. Eur J Nucl Med Mol Imaging 44 (2017), 1647–1655.
Beheshti, M., Paymani, Z., Brilhante, J., et al. Optimal time-point for (68)Ga-PSMA-11 PET/CT imaging in assessment of prostate cancer: feasibility of sterile cold-kit tracer preparation?. Eur J Nucl Med Mol Imaging 45 (2018), 1188–1196.
Taneja, S., Jena, A., Taneja, R., et al. Effect of Combined (68)Ga-PSMAHBED-CC Captation Pattern and Multiparametric MRI Derived With Simultaneous PET/MRI in the Diagnosis of Primary Prostate Cancer: Initial Experience. AJR Am J Roentgenol 210 (2018), 1338–1345.
Park, S.Y., Zacharias, C., Harrison, C., et al. Gallium 68 PSMA-11 PET/MR Imaging in Patients with Intermediate- or High-Risk Prostate Cancer. Radiology 288 (2018), 495–505.
Harkirat, S., Anand, S., Jacob, M., Forced diuresis and dual-phase F-fluorodeoxyglucose-PET/CT scan for rebilan d'extensionof urinary bladder cancers. Indian J Radiol Imaging 20 (2010), 13–19.
Anjos, D.A., Etchebehere, E.C., Ramos, C.D., et al. 18F-FDG PET/CT delayed images after diuretic for rebilan d'extensioninvasive bladder cancer. J Nucl Med 48 (2007), 764–770.
Yildirim-Poyraz, N., Ozdemir, E., Uzun, B., et al. Dual phase 18F-fluorodeoxyglucose positron emission tomography/computed tomography with forced diuresis in diagnostic imaging evaluation of bladder cancer. Rev Esp Med Nucl Imagen Mol 32 (2013), 214–221.
Shao, F., Zou, Y., Cai, L., et al. Unexpected Detection of Urinary Bladder Cancer on Dual Phase 18F-NaF PET/CT in a Patient With Back Pain. Clin Nucl Med 41 (2016), 902–904.
Lee, J.K., Min, K.J., So, K.A., et al. The effectiveness of dual-phase 18F-FDG PET/CT in the detection of epithelial ovarian carcinoma: a pilot study. J Ovarian Res, 7, 2014, 15.
Penna, D., Varetto, T., Deandreis, D., et al. Dual-phase F-18 FDG PET/CT scanning in the suspicion of relapse of ovarian neoplasia. Clin Nucl Med 34 (2009), 111–113.
Yen, T.C., Ng, K.K., Ma, S.Y., et al. Value of dual-phase 2-fluoro-2-deoxy-d-glucose positron emission tomography in cervical cancer. J Clin Oncol 21 (2003), 3651–3658.
Lai, C.H., Huang, K.G., See, L.C., et al. Rebilan d'extensionof recurrent cervical carcinoma with dual-phase [18F]fluoro-2-deoxy-D-glucose positron emission tomography. Cancer 100 (2004), 544–552.
Ma, S.Y., See, L.C., Lai, C.H., et al. Delayed (18)F-FDG PET for detection of paraaortic lymph node metastases in cervical cancer patients. J Nucl Med 44 (2003), 1775–1783.
Chou, H.H., Chang, T.C., Yen, T.C., et al. Low value of [18F]-fluoro-2-deoxy-D-glucose positron emission tomography in primary bilan d'extensionof early-stage cervical cancer before radical hysterectomy. J Clin Oncol 24 (2006), 123–128.
Mayoral, M., Paredes, P., Domenech, B., et al. (18)F-FDG PET/CT and sentinel lymph node biopsy in the bilan d'extensionof patients with cervical and endometrial cancer. Role of dual-time-point imaging. Rev Esp Med Nucl Imagen Mol 36 (2017), 20–26.
Nogami, Y., Banno, K., Irie, H., et al. Efficacy of 18-FDG PET-CT dual-phase scanning for detection of lymph node metastasis in gynecological cancer. Anticancer Res 35 (2015), 2247–2253.
Lin, G., Chen, C.Y., Liu, F.Y., et al. Computed tomography, magnetic resonance imaging and FDG positron emission tomography in the management of vulvar malignancies. Eur Radiol 25 (2015), 1267–1278.
Collarino, A., Garganese, G., Valdes Olmos, R.A., et al. Evaluation of Dual-Timepoint (18)F-FDG PET/CT Imaging for Lymph Node Bilan d'extensionin Vulvar Cancer. J Nucl Med 58 (2017), 1913–1918.
Nakayama, M., Okizaki, A., Ishitoya, S., et al. Dual-time-point F-18 FDG PET/CT imaging for differentiating the lymph nodes between malignant lymphoma and benign lesions. Ann Nucl Med 27 (2013), 163–169.
Christlieb, S.B., Strandholdt, C.N., Olsen, B.B., et al. Dual time-point FDG PET/CT and FDG captation and related enzymes in lymphadenopathies: preliminary results. Eur J Nucl Med Mol Imaging 43 (2016), 1824–1836.
Shinya, T., Fujii, S., Asakura, S., et al. Dual-time-point F-18 FDG PET/CT for evaluation in patients with malignant lymphoma. Ann Nucl Med 26 (2012), 616–621.
Chang, C.C., Cho, S.F., Chen, Y.M., et al. SUV on dual-phase FDG PET/CT correlates with the Ki-67 proliferation index in patients with newly diagnosed non-Hodgkin lymphoma. Clin Nucl Med 37 (2012), e189–e195.
Lim, D.H., Lee, J.H., Relationship Between Dual Time Point FDG PET/CT and Clinical Prognostic Indexes in Patients with High Grade Lymphoma: a Pilot Study. Nucl Med Mol Imaging 51 (2017), 323–330.
Chang, C.C., Cho, S.F., Chuang, Y.W., et al. Prognostic significance of retention index of bone marrow on dual-phase 18F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with diffuse large B-cell lymphoma. Medicine (Baltimore), 97, 2018, e9513.
Sahlmann, C.O., Siefker, U., Lehmann, K., et al. Dual time point 2-[18F]fluoro-2’-deoxyglucose positron emission tomography in chronic bacterial osteomyelitis. Nucl Med Commun 25 (2004), 819–823.
Tian, R., Su, M., Tian, Y., et al. Dual-time point PET/CT with F-18 FDG for the differentiation of malignant and benign bone lesions. Skeletal Radiol 38 (2009), 451–458.
Hamada, K., Tomita, Y., Ueda, T., et al. Evaluation of delayed 18F-FDG PET in differential diagnosis for malignant soft-tissue tumors. Ann Nucl Med 20 (2006), 671–675.
Shen, C.T., Qiu, Z.L., Sun, Z.K., et al. Dual time-point (18)F-FDG PET/CT imaging with multiple metabolic parameters in the differential diagnosis of malignancy-suspected bone/joint lesions. Oncotarget 8 (2017), 71188–71196.
Dancheva, Z., Bochev, P., Chaushev, B., et al. Dual-time point 18FDG-PET/CT imaging may be useful in assessing local recurrent disease in high grade bone and soft tissue sarcoma. Nucl Med Rev Cent East Eur 19 (2016), 22–27.
Chen, Y.K., Kao, C.H., Sun, S.S., et al. Exposing the evil in the dark: the usefulness of delayed-phase FDG PET scan to enhance the detectability of tiny residual skull base osteosarcoma initially concealed by adjacent high physiological brain activity. Clin Nucl Med 35 (2010), 630–632.
Spence, A.M., Muzi, M., Mankoff, D.A., et al. 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. J Nucl Med 45 (2004), 1653–1659.
Vermeere, V., Burg, S., Wager, M., et al. Intérêt de la TEP au [18F]-FDG double phase avec acquisition tardive dans la détection des tumeurs cérébrales. Med Nucl 31 (2007), 250–261.
Kim, D.W., Jung, S.A., Kim, C.G., et al. The efficacy of dual time point F-18 FDG PET imaging for grading of brain tumors. Clin Nucl Med 35 (2010), 400–403.
Prieto, E., Marti-Climent, J.M., Dominguez-Prado, I., et al. Voxel-based analysis of dual-time-point 18F-FDG PET images for brain tumor identification and delineation. J Nucl Med 52 (2011), 865–872.
Mertens, K., Acou, M., Van Hauwe, J., et al. Validation of 18F-FDG PET at conventional and delayed intervals for the discrimination of high-grade from low-grade gliomas: a stereotactic PET and MRI study. Clin Nucl Med 38 (2013), 495–500.
Abdel-Ghany, A., Hamed, M., The diagnostic value of dual phase FDG PET CT in grading of gliomas. Egyptian J Radiol Nucl Med 46 (2015), 701–705.
Zhao, G., Delayed 18F-FDG PET brain imaging improves detection rate of brain metastases. Proceedings of the SNM 50th annual meeting, 44, 2003, 243.
Dunkl, V., Cleff, C., Stoffels, G., et al. The usefulness of dynamic O-(2-18F-fluoroethyl)-L-tyrosine PET in the clinical evaluation of brain tumors in children and adolescents. J Nucl Med 56 (2015), 88–92.
Lohmann, P., Herzog, H., Rota Kops, E., et al, Dual-time-point O-(2-[(18)F]fluoroethyl)-L-tyrosine PET for grading of cerebral gliomas. Eur Radiol 25 (2015), 3017–3024.
Malkowski, B., Harat, M., Zyromska, A., et al. The Sum of Tumour-to-Brain Ratios Improves the Accuracy of Diagnosing Gliomas Using 18F-FET PET. PLoS One, 10, 2015, e0140917.
Harat, M., Malkowski, B., Makarewicz, R., Pre-irradiation tumour volumes defined by MRI and dual time-point FET-PET for the prediction of glioblastoma multiforme recurrence: A prospective study. Radiother Oncol 120 (2016), 241–247.
Harat, M., Malkowski, B., Wiatrowska, I., et al. Relationship between Glioblastoma Dose Volume Parameters Measured by Dual Time Point Fluoroethylthyrosine-PET and Clinical Outcomes. Front Neurol, 8, 2017, 756.
Horky, L.L., Hsiao, E.M., Weiss, S.E., et al. Dual phase FDG-PET imaging of brain metastases provides superior assessment of recurrence versus post-treatment necrosis. J Neurooncol 103 (2011), 137–146.
Wadhwa, E.L., Franc, B.L., Aboian, M., et al. Delayed Fluorodeoxyglucose Positron Emission Tomography Imaging in the Differentiation of Tumor Recurrence and Radiation Necrosis in Pediatric Central Nervous System Tumors: Case Report and Review of the Literature. Cureus, 10, 2018, e3364.
Matuszak, J., Waissi, W., Clavier, J.B., et al. Métastases cérébrales: apport de l'acquisition tardive en TEP/TDM au 18F-FDG pour le diagnostic différentiel entre récurrence tumorale et radionécrose. Med Nucl, 40, 2016, 196.
Lee, S., Park, T., Park, S., et al. The Clinical Role of Dual-Time-Point (18)F-FDG PET/CT in Differential Diagnosis of the Thyroid Incidentaloma. Nucl Med Mol Imaging 48 (2014), 121–129.
Kim, S.J., Kim, B.H., Jeon, Y.K., et al. Limited diagnostic and predictive values of dual-time-point 18F FDG PET/CT for differentiation of incidentally detected thyroid nodules. Ann Nucl Med 25 (2011), 347–353.
Soussan, M., Nataf, V., Kerrou, K., et al. Added value of early 18F-FDOPA PET/CT acquisition time in medullary thyroid cancer. Nucl Med Commun 33 (2012), 775–779.
Inoue, A., Tomiyama, N., Tatsumi, M., et al. (18)F-FDG PET for the evaluation of thymic epithelial tumors: Correlation with the World Health Organization classification in addition to dual-time-point imaging. Eur J Nucl Med Mol Imaging 36 (2009), 1219–1225.
Shinya, T., Tanaka, T., Soh, J., et al. Diagnostic Value of Dual-time-point F-18 FDG PET/CT and Chest CT for the Prediction of Thymic Epithelial Neoplasms. Acta Med Okayama 71 (2017), 105–112.
Toriihara, A., Nakamura, S., Kubota, K., et al. Can dual-time-point 18F-FDG PET/CT differentiate malignant salivary gland tumors from benign tumors?. AJR Am J Roentgenol 201 (2013), 639–644.
Li, J., Zhao, Q., He, L., et al. Primary Pulmonary Artery Sarcoma on Dual-Time Point FDG PET/CT Imaging. Clin Nucl Med 41 (2016), 656–658.
Wang, R., Wang, X., Ji, B., et al. Primary Common Iliac Artery Angiosarcoma With Multiple Bone Metastases Revealed by Dual-Time Point FDG PET/CT Imaging. Clin Nucl Med 44 (2019), 232–233.
Costantini, D.L., Vali, R., Chan, J., et al. Dual-time-point FDG PET/CT for the evaluation of pediatric tumors. AJR Am J Roentgenol 200 (2013), 408–413.
Abdul, H., Abdul, N., Nordin, A., Dual time point imaging of FDG PET/CT in a tuberculous spondylodiscitis. Biomed Imaging Interv J, 6, 2010, e18.
Kim, D.W., Kim, C.G., Park, S.A., et al. Experience of Dual Time Point Brain F-18 FDG PET/CT Imaging in Patients with Infectious Disease. Nucl Med Mol Imaging 44 (2010), 137–142.
Umeda, Y., Demura, Y., Ishizaki, T., et al. Dual-time-point 18F-FDG PET imaging for diagnosis of disease type and disease activity in patients with idiopathic interstitial pneumonia. Eur J Nucl Med Mol Imaging 36 (2009), 1121–1130.
Umeda, Y., Demura, Y., Morikawa, M., et al. Prognostic value of dual-time-point 18F-fluorodeoxyglucose positron emission tomography in patients with pulmonary sarcoidosis. Respirology 16 (2011), 713–720.
Umeda, Y., Demura, Y., Morikawa, M., et al. Prognostic Value of Dual-Time-Point 18F-FDG PET for Idiopathic Pulmonary Fibrosis. J Nucl Med 56 (2015), 1869–1875.
Blomberg, B.A., Akers, S.R., Saboury, B., et al. Delayed time-point 18F-FDG PET CT imaging enhances assessment of atherosclerotic plaque inflammation. Nucl Med Commun 34 (2013), 860–867.
Blomberg, B.A., Thomassen, A., Takx, R.A., et al. Delayed (1)(8)F-fluorodeoxyglucose PET/CT imaging improves quantitation of atherosclerotic plaque inflammation: results from the CAMONA study. J Nucl Cardiol 21 (2014), 588–597.
Blomberg, B.A., Thomassen, A., Takx, R.A., et al. Delayed sodium 18F-fluoride PET/CT imaging does not improve quantification of vascular calcification metabolism: results from the CAMONA study. J Nucl Cardiol 21 (2014), 293–304.
Oh, J.K., Yoo, I.D., Seo, Y.Y., et al. Clinical Significance of F-18 FP-CIT Dual Time Point PET Imaging in Idiopathic Parkinson's Disease. Nucl Med Mol Imaging 45 (2011), 255–260.
Mertens, K., Acou, M., Van den Broecke, C., et al. Progressive multifocal leukoencephalopathy (PML) mimicking high-grade glioma on delayed F-18 FDG PET imaging. J Clin Neurosci 19 (2012), 1167–1169.
Cecchin, D., Barthel, H., Poggiali, D., et al. A new integrated dual time-point amyloid PET/MRI data analysis method. Eur J Nucl Med Mol Imaging 44 (2017), 2060–2072.
Florek, L., Tiepolt, S., Schroeter, M.L., et al. Dual Time-Point [18F]Florbetaben PET Delivers Dual Biomarker Information in Mild Cognitive Impairment and Alzheimer's Disease. J Alzheimers Dis 66 (2018), 1105–1116.
Alkhawaldeh, K., Alavi, A., Quantitative assessment of FDG captation in brown fat using standardized captation value and dual-time-point scanning. Clin Nucl Med 33 (2008), 663–667.
Hairil Rashmizal, A.R., Noraini, A.R., Rossetti, C., et al. Brown fat captation of 18F-FDG on dual time point PET/CT imaging. Singapore Med J 51 (2010), e37–e39.
Cheng, G., Torigian, D.A., Zhuang, H., et al. When should we recommend use of dual time-point and delayed time-point imaging techniques in FDG PET?. Eur J Nucl Med Mol Imaging 40 (2013), 779–787.
Lovinfosse, P., Rousseau, C., Pierga, J.Y., Bouchet, F., Cochet, A., Albérini, J.L., et al. Dual time point [18F] FLT-PET for differentiating proliferating tissues vs non-proliferating tissues. EJNMMI Res, 9, 2019, 109.
Houshmand, S., Salavati, A., Segtnan, E.A., et al. Dual-time-point Imaging and Delayed-time-point Fluorodeoxyglucose-PET/Computed Tomography Imaging in Various Clinical Settings. PET Clin 11 (2016), 65–84.
Lovinfosse, P., Janvary, Z.L., Coucke, P., et al. FDG PET/CT texture analysis for predicting the outcome of lung cancer treated by stereotactic body radiation therapy. Eur J Nucl Med Mol Imaging 43 (2016), 1453–1460.
Lovinfosse, P., Hatt, M., Visvikis, D., et al. Heterogeneity analysis of 18F-FDG PET imaging in oncology: clinical indications and perspectives. Clin Transl Imaging 6 (2018), 393–410.
Lovinfosse, P., Polus, M., Van Daele, D., et al. FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer. Eur J Nucl Med Mol Imaging 45 (2018), 365–375.
Lovinfosse, P., Visvikis, D., Hustinx, R., et al. FDG PET radiomics: a review of the methodological aspects. Clin Transl Imaging 6 (2018), 379–391.