[en] During the last decade, the advent of multi-drug resistant pathogens responsible for skin infections tends to make conventional treatments obsolete. Even though many studies have reported the antimicrobial properties of essential oils (EOs), the inconsistent use of various susceptibility testing methods has made information on antimicrobial potential of many EO varieties fragmentary. Using a single method approach, the objective of this work was to assess and to compare the antibacterial and antifungal properties, against skin pathogens, of EOs extracted from West African aromatic plants. Twenty-three plant samples collected in Benin and Burkina Faso were screened against 20 bacterial and fungal isolates obtained from skin lesions. Activity was evaluated by the determination of minimal inhibitory concentrations (MICs), with readings facilitated by the use of resazurin, a blue dye metabolized into pink resorufin by viable cells. Following this screening, nine EOs were found particularly active with MICs lower than 0.35% v/v. Gas Chromatography-Mass Spectrometry (GC/MS) analysis was used to deter- mine the phytochemical profile of these active EOs which were found exceptionally rich in oxygenated monoterpenes, especially aldehydes, alcohols or phenols and their derivatives. Through this study, we demonstrated that several West African EOs have a significant an- timicrobial potential which could, however, be considerably impacted by plant growing or harvesting place due to phytochemical composition variation. These EOs, even if their antimicrobial effects appeared lower than those of conventional antibiotics, constitute easily available mixtures of active compounds and could nevertheless be considered, in the context of increasing multidrug resistance, as complementary or alternative therapies in common skin infections management.
Toukourou, Habib; Université d'Abomey Calavi - UAC > UFR Pharmacie/Faculté des Sciences de la Santé > Medicinal Organic Chemistry Laboratory (MOCL)
Catteau, Lucy; Université Catholique de Louvain - UCL > Louvain Drug Research Institute > Pharmacognosy Research Group (GNOS)
Toukourou, Fatiou; Université d'Abomey Calavi - UAC > Faculté des Sciences et Techniques > Laboratoire de Microbiologie et des Technologies Alimentaires
Evrard, Brigitte ; Université de Liège - ULiège > Département de pharmacie > Pharmacie galénique
Van Bambeke, Françoise; Université Catholique de Louvain - UCL > Louvain Drug Research Institute > Pharmacologie cellulaire et moléculaire (FACM)
Gbaguidi, Fernand; Université d'Abomey Calavi - UAC > UFR Pharmacie / Faculté des Sciences de la Santé > Medicinal Organic Chemistry Laboratory (MOCL)
Quetin-Leclercq, Joëlle; Université Catholique de Louvain - UCL > Louvain Drug Research Institute > Pharmacognosy Research Group (GNOS)
Language :
English
Title :
Antimicrobial potentials of essential oils extracted from West African aromatic plants on common skin infections
Publication date :
01 March 2021
Journal title :
Scientific African
eISSN :
2468-2276
Publisher :
Elsevier, Amsterdam, Netherlands
Volume :
11
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
VALTRAMED
Funders :
ARES CCD - Académie de Recherche et d'Enseignement Supérieur. Coopération au Développement
Hees, C, Naafs, B., Common skin diseases in Africa: An illustrated guide: Stichting TrodermaVan Hees. 2009.
Health Statistics Yearbook 2017. Benin: ministry of health; March 2018.
Health Statistics Yearbook 2018. Burkina Faso: Ministry of Health; April 2019.
Organization WH. Epidemiology and management of common skin diseases in children in developing countries. World Health Organization, 2005.
Osaigbovo, I., Prevalence and pattern of infectious dermatoses referrals to clinical microbiologists in a tertiary hospital in Southern Nigeria. Afr J Clin Exp Microbiol 20:2 (2019), 150–158.
Nweze, E., Dermatophytosis in Western Africa: a review. Pak J Biol Sci 13:13 (2010), 649–656.
Hogewoning, A, Amoah, A, Bavinck, JNB, Boakye, D, Yazdanbakhsh, M, Adegnika, A, De Smedt, S, Fonteyne, Y, Willemze, R, Lavrijsen, A., Skin diseases among schoolchildren in Ghana, Gabon, and Rwanda. Int. J. Dermatol. 52:5 (2013), 589–600.
Atadokpede, F, Yedomon, H, Adegbidi, H, Sehonou, J, Koudoukpo, C, Houenassi, D, Do Ango-Padonou, F, Prévalence de l'eczéma, de la xérose et des anomalies phanériennes chez les patients infectés par le HIV à Cotonou. Bénin. Int. J. Dermatol. 51 (2012), 53–55.
Sina, H, Baba-Moussa, F, Ahoyo, T, Mousse, W, Anagonou, S, Gbenou, J, Prévost, G, Kotchoni, S, Baba-Moussa, L., Antibiotic susceptibility and Toxins production of Staphylococcus aureus isolated from clinical samples from Benin. Afr. J. Microbiol. Res. 5:18 (2011), 2797–2803.
Ouedraogo A-S. Prévalence, circulation et caractérisation des bactéries multirésistantes au Burkina Faso 2016.
Orchard, A, van Vuuren, S., Commercial essential oils as potential antimicrobials to treat skin diseases. Evid.-Based Complement. Altern. Med., 2017 2017.
Nakamura, CV, Ueda-Nakamura, T, Bando, E, Melo, AFN, Cortez, DAG, Dias Filho, BP, Antibacterial activity of Ocimum gratissimum L. essential oil. Memórias do Instituto Oswaldo Cruz 94:5 (1999), 675–678.
Kpadonou Kpoviessi, BG, Ladekan, EY, Kpoviessi, DS, Gbaguidi, F, Yehouenou, B, Quetin-Leclercq, J, Figueredo, G, Moudachirou, M, Accrombessi, GC, Chemical variation of essential oil constituents of Ocimum gratissimum L. from Benin, and impact on antimicrobial properties and toxicity against Artemia salina Leach. Chem. Biodivers. 9:1 (2012), 139–150.
Bassole, I, Ouattara, A, Nebie, R, Ouattara, C, Kabore, Z, Traore, S., Chemical composition and antibacterial activities of the essential oils of Lippia chevalieri and Lippia multiflora from Burkina Faso. Phytochemistry 62:2 (2003), 209–212.
Jahnke, HE, Jahnke, HE., Livestock production systems and livestock development in tropical Africa. 1982, Kieler Wissenschaftsverlag Vauk Kiel.
Catteau, L, Reichmann, NT, Olson, J, Pinho, MG, Nizet, V, Van Bambeke, F, Quetin-Leclercq, J., Synergy between ursolic and oleanolic acids from Vitellaria paradoxa leaf extract and β-lactams against methicillin-resistant Staphylococcus aureus: in vitro and in vivo activity and underlying mechanisms. Molecules, 22(12), 2017, 2245.
American Type Culture Collection, American Type Culture Collection Bacterial Culture Guide, Tips and Techniques for Culturing Bacteria and Bacteriophages. 2015 [Internet]Available from: https://www.atcc.org/~/media/PDFs/Culture%20Guides/ATCC_Bacterial_Culture_Guide.ashx.
Microbiologie, S.F., Détermination de la sensibilité aux antibiotiques. 2018, CASFM/EUCAST, 7–23 In: Microbiologie S.F., ed.ed2018.
Weinstein, MP., Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 2018, National Committee for Clinical Laboratory Standards.
Hood, JR, Wilkinson, JM, Cavanagh, HM., Evaluation of common antibacterial screening methods utilized in essential oil research. J. Essent. Oil Res. 15:6 (2003), 428–433.
Baser, KHC, Buchbauer, G., Handbook of essential oils: science, technology, and applications. 2015, CRC press.
Mahboubi, M, Kazempour, N., Chemical composition and antimicrobial activity of peppermint (Mentha piperita L.) Essential oil. Songklanakarin J. Sci. Technol. 36:1 (2014), 83–87.
Inouye, S, Yamaguchi, H, Takizawa, T., Screening of the antibacterial effects of a variety of essential oils on respiratory tract pathogens, using a modified dilution assay method. J. Infect. Chemother. 7:4 (2001), 251–254.
Onawunmi, GO, Yisak, W-A, Ogunlana, E., Antibacterial constituents in the essential oil of Cymbopogon citratus (DC.) Stapf. J. Ethnopharmacol. 12:3 (1984), 279–286.
Hammer, KA, Carson, CF, Riley, TV., Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 86:6 (1999), 985–990.
Lertsatitthanakorn, P, Taweechaisupapong, S, Aromdee, C, Khunkitti, W., In vitro bioactivities of essential oils used for acne control. Int. J. Aromather. 16:1 (2006), 43–49.
Jirovetz, L, Buchbauer, G, Eller, G, Ngassoum, MB, Maponmetsem, PM., Composition and antimicrobial activity of Cymbopogon giganteus (Hochst.) Chiov. essential flower, leaf and stem oils from Cameroon. J. Essent. Oil Res. 19:5 (2007), 485–489.
Kumbhar, PP, Dewang, PM., Eco-friendly pest management using monoterpenoids. I. Antifungal Efficacy of Thymol Derivatives. J. Sci. Ind. Res. 60 (2001), 645–648.
Marinelli, L, Fornasari, E, Eusepi, P, Ciulla, M, Genovese, S, Epifano, F, Fiorito, S, Turkez, H, Örtücü, S, Mingoia, M., Carvacrol prodrugs as novel antimicrobial agents. Eur. J. Med. Chem. 178 (2019), 515–529.
Oyedemi, S, Okoh, A, Mabinya, L, Pirochenva, G, Afolayan, A., The proposed mechanism of bactericidal action of eugenol,α-terpineol and ɣ-terpinene against Listeria monocytogenes, Streptococcus pyogenes, Proteus vulgaris and Escherichia coli. Afr J Biotechnol, 8(7), 2009.
Hussain, AI, Anwar, F, Sherazi, STH, Przybylski, R., Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 108:3 (2008), 986–995.
Carson, C, Riley, T., Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. J. Appl. Bacteriol. 78:3 (1995), 264–269.
İşcan, G, Kirimer, N, Kürkcüoǧlu, Mn, Başer, HC, DEMIrci, F., Antimicrobial screening of Mentha piperita essential oils. J. Agric. Food Chem. 50:14 (2002), 3943–3946.
Alitonou, GA, Sessou, P, Tchobo, PF, Noudogbessi, J-P, Avlessi, F, Yehouenou, B, Menut, C, Villeneuve, P, Sohounhloue, DCK., Chemical composition and biological activities of essential oils of Chenopodium ambrosioides L. collected in two areas of Benin. Int. J. Biosci. 2:8 (2012), 58–66.
Nielsen, CK, Kjems, J, Mygind, T, Snabe, T, Meyer, RL., Effects of Tween 80 on growth and biofilm formation in laboratory media. Frontiers in microbiology, 7, 2016, 1878.
Derbré, S, Licznar-Fajardo, P, Sfeir, J., Intérêt des huiles essentielles dans les angines à Streptococcus pyogenes. Actualités Pharm. 52:530 (2013), 46–50.
Rasooli, I, Shayegh, S, Astaneh, S., The effect of Mentha spicata and Eucalyptus camaldulensis essential oils on dental biofilm. Int. J. Dent. Hyg. 7:3 (2009), 196–203.
Hzounda, F, Jazet, D, Bakarnga, V, Mback, NM, Zeuko'o, M, Fall, A, Bassene, E, Fekam, B., Optimized combinations of Ocimum essential oils inhibit growth of four Candida albicans. Int. J. Drug Discov., 6(1), 2014, 198.
Oladimeji, F, Orafidiya, LO, Okeke, I., Physical properties and antimicrobial activities of leaf essential oil ofLippia multiflora Moldenke. Int. J. Aromather. 14:4 (2004), 162–168.
Koba, K, Sanda, K, Guyon, C, Raynaud, C, Chaumont, J-P, Nicod, L., In vitro cytotoxic activity of Cymbopogon citratus L. and Cymbopogon nardus L. essential oils from Togo. Bangladesh J. Pharmacol. 4:1 (2009), 29–34.