[en] We study experimentally the dynamical behavior of few large tracer particles placed in a quasi-2D granular “gas” made of many small beads in a low-gravity environment. Multiple inelastic collisions transfer momentum from the uniaxially driven gas to the tracers whose velocity distributions are studied through particle tracking. Analyzing these distributions for an increasing system density reveals that translational energy equipartition is reached at the onset of the gas-liquid granular transition corresponding to the emergence of local clusters. The dynamics of a few tracer particles thus appears as a simple and accurate tool to detect this transition. A model is proposed for describing accurately the formation of local heterogeneities.
Research Center/Unit :
Group for Research and Application in Statistical Physics
Disciplines :
Physics
Author, co-author :
Noirhomme, Martial ; Université de Liège - ULiège > Département de physique > Physique statistique
Cazaubiel, Annette
Falcon, Eric
Fischer, David
Garrabos, Yves
Lecoutre-Chabot, Carole
Mawet, Sébastien ; Université de Liège - ULiège > Département de physique > Optofluidique
Opsomer, Eric ; Université de Liège - ULiège > Département de physique > Physique statistique
Palencia, Fabien
Pillitteri, Salvatore ; Université de Liège - ULiège > Département de physique > Physique statistique
Vandewalle, Nicolas ; Université de Liège - ULiège > Département de physique > Physique statistique
Language :
English
Title :
Particle Dynamics at the Onset of the Granular Gas-Liquid Transition
Publication date :
26 March 2021
Journal title :
Physical Review Letters
ISSN :
0031-9007
eISSN :
1079-7114
Publisher :
American Physical Society, New York, United States - New York
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
C. C. Maaß, N. Isert, G. Maret, and C. M. Aegerter, Phys. Rev. Lett. 100, 248001 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.100.248001
Y. Grasselli, G. Bossis, and G. Goutallier, Europhys. Lett. 86, 60007 (2009). EULEEJ 0295-5075 10.1209/0295-5075/86/60007
S. Tatsumi, Y. Murayama, H. Hayakawa, and M. Sano, J. Fluid Mech. 641, 521 (2009). JFLSA7 0022-1120 10.1017/S002211200999231X
K. Harth, T. Trittel, S. Wegner, and R. Stannarius, Phys. Rev. Lett. 120, 214301 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.120.214301
T. P. C. van Noije and M. H. Hernst, Granular Matter 1, 57 (1998). GRMAFE 1434-5021 10.1007/s100350050009
A. Puglisi, V. Loreto, U. Marini Bettolo Marconi, A. Petri, and A. Vulpiani, Phys. Rev. Lett. 81, 3848 (1998). PRLTAO 0031-9007 10.1103/PhysRevLett.81.3848
C. Scholz and T. Pöschel, Phys. Rev. Lett. 118, 198003 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.118.198003
F. Rouyer and N. Menon, Phys. Rev. Lett. 85, 3676 (2000). PRLTAO 0031-9007 10.1103/PhysRevLett.85.3676
W. Losert, D. G. W. Cooper, J. Delour, A. Kudrolli, and J. P. Gollub, Chaos 9, 682 (1999). CHAOEH 1054-1500 10.1063/1.166442
J. S. Olafsen and J. S. Urbach, Phys. Rev. E 60, R2468(R) (1999); PLEEE8 1063-651X 10.1103/PhysRevE.60.R2468
A. Kudrolli and J. Henry, Phys. Rev. E 62, R1489 (2000); PLEEE8 1063-651X 10.1103/PhysRevE.62.R1489
J. S. van Zon, J. Kreft, D. I. Goldman, D. Miracle, J. B. Swift, and H. L. Swinney, Phys. Rev. E 70, 040301(R) (2004); PRESCM 1539-3755 10.1103/PhysRevE.70.040301
H.-Q. Wang, K. Feitosa, and N. Menon, Phys. Rev. E 80, 060304(R) (2009); PRESCM 1539-3755 10.1103/PhysRevE.80.060304
Y. Chen, M. Hou, Y. Jiang, and M. Liu, Phys. Rev. E 88, 052204 (2013). PRESCM 1539-3755 10.1103/PhysRevE.88.052204
T. Kanzaki, R. C. Hidalgo, D. Maza, and I. Pagonabarraga, J. Stat. Mech. (2010) P06020. JSMTC6 1742-5468 10.1088/1742-5468/2010/06/P06020
H.-Q. Wang and N. Menon, Phys. Rev. Lett. 100, 158001 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.100.158001
K. Harth, U. Kornek, T. Trittel, U. Strachauer, S. Höme, K. Will, and R. Stannarius, Phys. Rev. Lett. 110, 144102 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.110.144102
G. Castillo, S. Merminod, E. Falcon, and M. Berhanu, Phys. Rev. E 101, 032903 (2020), and references therein. PRESCM 2470-0045 10.1103/PhysRevE.101.032903
E. Falcon, J.-C. Bacri, and C. Laroche, Europhys. Lett. 103, 64004 (2013); EULEEJ 0295-5075 10.1209/0295-5075/103/64004
E. Falcon, J.-C. Bacri, and C. Laroche Phys. Rev. Fluids 2, 102601(R) (2017). PLFHBR 2469-990X 10.1103/PhysRevFluids.2.102601
P. K. Haff, J. Fluid Mech. 134, 401 (1983). JFLSA7 0022-1120 10.1017/S0022112083003419
I. Goldhirsch and G. Zanetti, Phys. Rev. Lett. 70, 1619 (1993). PRLTAO 0031-9007 10.1103/PhysRevLett.70.1619
S. E. Esipov and T. Pöschel, J. Stat. Phys. 86, 1385 (1997). JSTPBS 0022-4715 10.1007/BF02183630
E. Falcon, R. Wunenburger, P. Évesque, S. Fauve, C. Chabot, Y. Garrabos, and D. Beysens, Phys. Rev. Lett. 83, 440 (1999). PRLTAO 0031-9007 10.1103/PhysRevLett.83.440
S. Aumaître, A. Alastuey, and S. Fauve, Eur. Phys. J. B 54, 263 (2006). EPJBFY 1434-6028 10.1140/epjb/e2006-00447-7
E. Opsomer, F. Ludewig, and N. Vandewalle, Europhys. Lett. 99, 40001 (2012). EULEEJ 0295-5075 10.1209/0295-5075/99/40001
M. Noirhomme, F. Ludewig, N. Vandewalle, and E. Opsomer, Phys. Rev. E 95, 022905 (2017). PRESCM 2470-0045 10.1103/PhysRevE.95.022905
K. Roeller, J. P. D. Clewett, R. M. Bowley, S. Herminghaus, and M. R. Swift, Phys. Rev. Lett. 107, 048002 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.107.048002
L. H. Luu, G. Castillo, N. Mujica, and R. Soto, Phys. Rev. E 87, 040202(R) (2013). PRESCM 1539-3755 10.1103/PhysRevE.87.040202
D. Puzyrev, K. Harth, T. Trittel, and R. Stannarius, Microgravity Sci. Technol. 32, 897 (2020). MSTYEN 0938-0108 10.1007/s12217-020-09800-4
E. Falcon, S. Fauve, and C. Laroche, Eur. Phys. J. B 9, 183 (1999). EPJBFY 1434-6028 10.1007/s100510050755
M. Heckel, A. Sack, J. E. Kollmer, and T. Pöschel, Phys. Rev. E 91, 062213 (2015). PRESCM 1539-3755 10.1103/PhysRevE.91.062213
European Space Agency's SpaceGrains project, http://www.spacegrains.org/.
I. F. Sbalzarini and P. Koumoustsakos, J. Struct. Biol. 151, 182 (2005). JSBIEM 1047-8477 10.1016/j.jsb.2005.06.002
J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, Nat. Methods 9, 676 (2012). NMAEA3 1548-7091 10.1038/nmeth.2019
M. Noirhomme, A. Cazaubiel, A. Darras, E. Falcon, D. Fischer, Y. Garrabos, C. Lecoutre-Chabot, S. Merminod, E. Opsomer, F. Palencia, J. Schockmel, R. Stannarius, and N. Vandewalle, Europhys. Lett. 123, 14003 (2018). EULEEJ 0295-5075 10.1209/0295-5075/123/14003
M. Rovere, D. W. Hermann, and K. Binder, Europhys. Lett. 6, 585 (1988). EULEEJ 0295-5075 10.1209/0295-5075/6/7/003
M. Rovere, D. W. Hermann, and K. Binder, J. Phys. Condens. Matter 2, 7009 (1990). JCOMEL 0953-8984 10.1088/0953-8984/2/33/013
L. Onsager, Phys. Rev. 37, 405 (1931). PHRVAO 0031-899X 10.1103/PhysRev.37.405
M. Doi, J. Phys. Condens. Matter 23, 284118 (2011). JCOMEL 0953-8984 10.1088/0953-8984/23/28/284118
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.126.128002, which includes Refs. [21,36], for details on the theoretic model.
S. Herminghaus and M. G. Mazza, Soft Matter 13, 898 (2017). SMOABF 1744-683X 10.1039/C6SM02224C
J. P. D. Clewett, J. Wade, R. M. Bowley, S. Herminghaus, M. R. Swift, and M. G. Mazza, Sci. Rep. 6, 28726 (2016). SRCEC3 2045-2322 10.1038/srep28726
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.