Labeit, D., Watanabe, K., Witt, C., Fujita, H., Wu, Y., Lahmers, S., Funck, T., Labeit, S., Granzier, H., Calcium-dependent molecular spring elements in the giant protein titin. Proc. Natl. Acad. Sci. USA 100 (2003), 13716–13721.
Javadi, Y., Fernandez, J.M., Perez-Jimenez, R., Protein folding under mechanical forces: a physiological view. Physiology 28 (2013), 9–17.
Bao, G., Protein mechanics: a new frontier in biomechanics. Exp. Mech. 49 (2009), 153–164.
Kuhlman, B., Bradley, P., Advances in protein structure prediction and design. Nat. Rev. Mol. Cell Biol. 20 (2019), 681–697.
Hoffmann, T., Dougan, L., Single molecule force spectroscopy using polyproteins. Chem. Soc. Rev. 41 (2012), 4781–4796.
Camunas-Soler, J., Ribezzi-Crivellari, M., Ritort, F., Elastic properties of nucleic acids by single-molecule force spectroscopy. Annu. Rev. Biophys. 45 (2016), 65–84.
Janshoff, A., Neitzert, M., Oberdörfer, Y., Fuchs, H., Force spectroscopy of molecular systems-single moleculespectroscopy of polymers and biomolecules. Angew. Chem. Int. Ed. Engl. 39 (2000), 3212–3237.
Fisher, T.E., Marszalek, P.E., Fernandez, J.M., Stretching single molecules into novel conformations using the atomic force microscope. Nat. Struct. Biol. 7 (2000), 719–724.
Bustamante, C., Chemla, Y.R., Forde, N.R., Izhaky, D., Mechanical processes in biochemistry. Annu. Rev. Biochem. 73 (2004), 705–748.
Neuman, K.C., Nagy, A., Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5 (2008), 491–505.
Puchner, E.M., Gaub, H.E., Force and function: probing proteins with AFM-based force spectroscopy. Curr. Opin. Struct. Biol. 19 (2009), 605–614.
Liang, J., Fernández, J.M., Mechanochemistry: one bond at a time. ACS Nano 3 (2009), 1628–1645.
Duwez, A.-S., Willet, N., Molecular Manipulation with Atomic Force Microscopy. 2012, CRC Press Press.
Hughes, M.L., Dougan, L., The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding. Rep. Prog. Phys., 79, 2016, 076601.
Giannotti, M.I., Vancso, G.J., Interrogation of single synthetic polymer chains and polysaccharides by AFM-based force spectroscopy. ChemPhysChem 8 (2007), 2290–2307.
Oesterhelt, F., Rief, M., Gaub, H.E., Single molecule force spectroscopy by AFM indicates helical structure of poly(ethylene-glycol) in water. New J. Phys., 1, 1999, 6.
Marszalek, P.E., Oberhauser, A.F., Pang, Y.P., Fernandez, J.M., Polysaccharide elasticity governed by chair-boat transitions of the glucopyranose ring. Nature 396 (1998), 661–664.
Rief, M., Oesterhelt, F., Heymann, B., Gaub, H.E., Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275 (1997), 1295–1297.
Cheng, R.P., Gellman, S.H., DeGrado, W.F., β-peptides: From structure to function. Chem. Rev. 101 (2001), 3219–3232.
Yashima, E., Maeda, K., Iida, H., Furusho, Y., Nagai, K., Helical polymers: synthesis, structures, and functions. Chem. Rev. 109 (2009), 6102–6211.
Yashima, E., Ousaka, N., Taura, D., Shimomura, K., Ikai, T., Maeda, K., Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 116 (2016), 13752–13990.
Kim, J.S., Jung, Y.J., Park, J.W., Shaller, A.D., Wan, W., Li, A.D.Q., Mechanically stretching folded nano- π-b; -stacks reveals pico-newton attractive forces. Adv. Mater. 21 (2009), 786–789.
Sluysmans, D., Zhang, L., Li, X., Garci, A., Stoddart, J.F., Duwez, A.S., Viologen tweezers to probe the force of individual donor−acceptor π-interactions. J. Am. Chem. Soc. 142 (2020), 21153–21159.
Sluysmans, D., Willet, N., Thevenot, J., Lecommandoux, S., Duwez, A.S., Single- molecule mechanical unfolding experiments reveal a critical length for the formation of α-helices in peptides. Nanoscale Horiz 5 (2020), 671–678.
Lussis, P., Svaldo-Lanero, T., Bertocco, A., Fustin, C.A., Leigh, D.A., Duwez, A.S., A single synthetic small molecule that generates force against a load. Nat. Nanotechnol. 6 (2011), 553–557.
Van Quaethem, A., Lussis, P., Leigh, D.A., Duwez, A.-S., Fustin, C.-A., Probing the mobility of catenane rings in single molecules. Chem. Sci. 5 (2014), 1449–1452.
Sluysmans, D., Hubert, S., Bruns, C.J., Zhu, Z., Stoddart, J.F., Duwez, A.S., Synthetic oligorotaxanes exert high forces when folding under mechanical load. Nat. Nanotechnol. 13 (2018), 209–213.
Sluysmans, D., Devaux, F., Bruns, C.J., Stoddart, J.F., Duwez, A.S., Dynamic force spectroscopy of synthetic oligorotaxane foldamers. Proc. Natl. Acad. Sci. USA 115 (2018), 9362–9366.
Huc, I., Aromatic oligoamide foldamers. Eur. J. Org. Chem. 2004 (2004), 17–29.
Gong, B., Zeng, H., Zhu, J., Yuan, L., Han, Y., Cheng, S., Furukawa, M., Parra, R.D., Kovalevsky, A.Y., Mills, J.L., et al. Creating nanocavities of tunable sizes: hollow helices. Proc. Natl. Acad. Sci. USA 99 (2002), 11583–11588.
Ohkita, M., Lehn, J.M., Baum, G., Fenske, D., Helicity coding: programmed molecular self-organization of achiral nonbiological strands into multiturn helical superstructures: synthesis and characterization of alternating pyridine-pyrimidine oligomers. Chem. Eur. J. 5 (1999), 3471–3481.
Qi, T., Maurizot, V., Noguchi, H., Charoenraks, T., Kauffmann, B., Takafuji, M., Ihara, H., Huc, I., Solvent dependence of helix stability in aromatic oligoamide foldamers. Chem. Commun., 48, 2012, 6337.
Delsuc, N., Kawanami, T., Lefeuvre, J., Shundo, A., Ihara, H., Takafuji, M., Huc, I., Kinetics of helix-handedness inversion: folding and unfolding in aromatic amide oligomers. ChemPhysChem 9 (2008), 1882–1890.
Abramyan, A.M., Liu, Z., Pophristic, V., Helix handedness inversion in arylamide foldamers: elucidation and free energy profile of a hopping mechanism. Chem. Commun. 52 (2016), 669–672.
Li, X., Qi, T., Srinivas, K., Massip, S., Maurizot, V., Huc, I., Synthesis and multibromination of nanosized helical aromatic amide foldamers via segment-doubling condensation. Org. Lett. 18 (2016), 1044–1047.
Ziach, K., Chollet, C., Parissi, V., Prabhakaran, P., Marchivie, M., Corvaglia, V., Bose, P.P., Laxmi-Reddy, K., Godde, F., Schmitter, J.-M., et al. Single helically folded aromatic oligoamides that mimic the charge surface of double-stranded B-DNA. Nat. Chem. 10 (2018), 511–518.
Chandramouli, N., Ferrand, Y., Lautrette, G., Kauffmann, B., MacKereth, C.D., Laguerre, M., Dubreuil, D., Huc, I., Iterative design of a helically folded aromatic oligoamide sequence for the selective encapsulation of fructose. Nat. Chem. 7 (2015), 334–341.
Méndez-Ardoy, A., Markandeya, N., Li, X., Tsai, Y.T., Pecastaings, G., Buffeteau, T., Maurizot, V., Muccioli, L., Castet, F., Huc, I., Bassani, D.M., Multi-dimensional charge transport in supramolecular helical foldamer assemblies. Chem. Sci. 8 (2017), 7251–7257.
Li, X., Markandeya, N., Jonusauskas, G., McClenaghan, N.D., Maurizot, V., Denisov, S.A., Huc, I., Photoinduced electron transfer and hole migration in nanosized helical aromatic oligoamide foldamers. J. Am. Chem. Soc. 138 (2016), 13568–13578.
Rief, M., Pascual, J., Saraste, M., Gaub, H.E., Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J. Mol. Biol. 286 (1999), 553–561.
Berkemeier, F., Bertz, M., Xiao, S., Pinotsis, N., Wilmanns, M., Gräter, F., Rief, M., Fast-folding alpha-helices as reversible strain absorbers in the muscle protein myomesin. Proc. Natl. Acad. Sci. USA 108 (2011), 14139–14144.
Schwaiger, I., Sattler, C., Hostetter, D.R., Rief, M., The myosin coiled-coil is a truly elastic protein structure. Nat. Mater. 1 (2002), 232–235.
Li, L., Wetzel, S., Plückthun, A., Fernandez, J.M., Stepwise unfolding of ankyrin repeats in a single protein revealed by atomic force microscopy. Biophys. J. 90 (2006), L30–L32.
Takahashi, H., Rico, F., Chipot, C., Scheuring, S., α-helix unwinding as force buffer in spectrins. ACS Nano 12 (2018), 2719–2727.
Cluzel, P., Lebrun, A., Heller, C., Lavery, R., Viovy, J.L., Chatenay, D., Caron, F., DNA: an extensible molecule. Science 271 (1996), 792–794.
Smith, S.B., Cui, Y., Bustamante, C., Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271 (1996), 795–799.
Zhang, Q., Marszalek, P.E., Identification of sugar isomers by single-molecule force spectroscopy. J. Am. Chem. Soc. 128 (2006), 5596–5597.
Zhang, L., Wang, C., Cui, S., Wang, Z., Zhang, X., Single-molecule force spectroscopy on curdlan: unwinding helical structures and random coils. Nano Lett 3 (2003), 1119–1124.
Zegarra, F.C., Peralta, G.N., Coronado, A.M., Gao, Y.Q., Free energies and forces in helix–coil transition of homopolypeptides under stretching. Phys. Chem. Chem. Phys. 11 (2009), 4019–4024.
Zoldák, G., Stigler, J., Pelz, B., Li, H., Rief, M., Ultrafast folding kinetics and cooperativity of villin headpiece in single-molecule force spectroscopy. Proc. Natl. Acad. Sci. USA 110 (2013), 18156–18161.
Rico, F., Gonzalez, L., Casuso, I., Puig-Vidal, M., Scheuring, S., High-speed force spectroscopy unfolds titin at the velocity of molecular dynamics simulations. Science 342 (2013), 741–743.
Yu, H., Siewny, M.G.W., Edwards, D.T., Sanders, A.W., Perkins, T.T., Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins. Science 355 (2017), 945–950.
Puchner, E.M., Franzen, G., Gautel, M., Gaub, H.E., Comparing proteins by their unfolding pattern. Biophys. J. 95 (2008), 426–434.
Uribe, L., Gauss, J., Diezemann, G., Determining factors for the unfolding pathway of peptides, peptoids, and peptidic foldamers. J. Phys. Chem. B 120 (2016), 10433–10441.
Parent, L.R., Bakalis, E., Ramírez-Hernández, A., Kammeyer, J.K., Park, C., de Pablo, J., Zerbetto, F., Patterson, J.P., Gianneschi, N.C., Directly observing micelle fusion and growth in solution by liquid-cell transmission electron microscopy. J. Am. Chem. Soc. 139 (2017), 17140–17151.
Parent, L.R., Bakalis, E., Proetto, M., Li, Y., Park, C., Zerbetto, F., Gianneschi, N.C., Tackling the challenges of dynamic experiments using liquid-cell transmission electron microscopy. Acc. Chem. Res. 51 (2018), 3–11.
Bakalis, E., Parent, L.R., Vratsanos, M., Park, C., Gianneschi, N.C., Zerbetto, F., Complex nanoparticle diffusional motion in liquid-cell transmission electron microscopy. J. Phys. Chem. C 124 (2020), 14881–14890.
Zwanzig, R., Szabo, A., Bagchi, B., Levinthal's paradox. Proc. Natl. Acad. Sci. USA 89 (1992), 20–22.
Karplus, M., The Levinthal paradox: yesterday and today. Fold. Des. 2 (1997), S69–S75.