Article (Scientific journals)
Error curves for evaluating the quality of feature rankings
Slavkov, Ivica; Petkovic, Matej; Geurts, Pierre et al.
2020In PeerJ Computer Science, 6 (e310), p. 39
Peer Reviewed verified by ORBi
 

Files


Full Text
peerj-cs-310.pdf
Publisher postprint (3.31 MB)
https://peerj.com/articles/cs-310/
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Machine learning; Feature selection
Abstract :
[en] In this article, we propose a method for evaluating feature ranking algorithms. A feature ranking algorithm estimates the importance of descriptive features when predicting the target variable, and the proposed method evaluates the correctness of these importance values by computing the error measures of two chains of predictive models. The models in the first chain are built on nested sets of top-ranked features, while the models in the other chain are built on nested sets of bottom ranked features. We investigate which predictive models are appropriate for building these chains, showing empirically that the proposed method gives meaningful results and can detect differences in feature ranking quality. This is first demonstrated on synthetic data, and then on several real-world classification benchmark problems.
Disciplines :
Computer science
Author, co-author :
Slavkov, Ivica;  Jozef Stefan Institute, Ljubljana, Slovenia
Petkovic, Matej;  Jozef Stefan Institute, Ljubljana, Slovenia
Geurts, Pierre  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
Kocev, Dragi;  Jozef Stefan Institute, Ljubljana, Slovenia
Dzeroski, Saso;  Jozef Stefan Institute, Ljubljana, Slovenia
Language :
English
Title :
Error curves for evaluating the quality of feature rankings
Publication date :
07 December 2020
Journal title :
PeerJ Computer Science
eISSN :
2376-5992
Publisher :
PeerJ Inc., United States
Volume :
6
Issue :
e310
Pages :
39
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 28 March 2021

Statistics


Number of views
105 (3 by ULiège)
Number of downloads
53 (3 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi