[en] BIOLOGICAL ASPECTS OF JAK/STAT SIGNALING IN BCR-ABL-NEGATIVE MYELOPROLIFERATIVE NEOPLASMS: Myeloproliferative disorders more recently named Myeloproliferative neoplasms (MPN) display several clinical entities: chronic myeloid leukemia (CML), the classical MPN including polycythemia vera (PV), essential thrombocythemia (ET), primary myelofibrosis (PMF) and atypical and unclassifiable NMP. The term MPN is mostly used for classical BCR-ABL-negative (myeloproliferative disorder) (ET, PV, PMF). These are clonal diseases resulting from the transformation of an hematopoietic stem cell and leading to an abnormal production of myeloid cells. The genetic defects responsible for the myeloproliferative abnormalities are called « driver » mutations and all result in deregulation of the cytokine receptor / JAK2 / STAT axis. Among them, JAK2, the thrombopoietin receptor (MPL) and calreticulin (CALR) mutations are found in around 90% of the cases. These driver MPN mutations can be associated with other driver mutations also found in other hematological malignancies, especially in PMFs. These are chronic diseases with major risks being thrombosis, hemorrhage and cytopenias for PMF and the long-term progression to myelofibrosis and the transformation to leukemia. Most recent therapeutic have focused on targeting the JAK2 signaling pathway directly by inhibitors of JAK2 or indirectly. Interferon a allows in some cases hematologic and molecular remission patients.
Disciplines :
Hematology
Author, co-author :
Mosca, Matthieu ✱
VERTENOEIL, Gaëlle ✱; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service d'hématologie clinique
Toppaldoddi, Katte Rao
Plo, Isabelle
Vainchenker, William
✱ These authors have contributed equally to this work.
Language :
French
Title :
Aspects biologiques de la voie JAK/STAT dans les néoplasmes myéloprolifératifs classiques négatifs pour BCR-ABL.
[1] Tefferi, A., Vardiman, J.W., Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 22:1 (2008), 14–22.
[2] Rumi, E., Pietra, D., Ferretti, V., Klampfl, T., Harutyunyan, A.S., Milosevic, J.D., et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood 123:10 (2014), 1544–1551.
[3] Kiladjian, J.J., Chevret, S., Dosquet, C., Chomienne, C., Rain, J.D., Treatment of polycythemia vera with hydroxyurea and pipobroman: final results of a randomized trial initiated in 1980. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 29:29 (2011), 3907–3913.
[4] Klampfl, T., Gisslinger, H., Harutyunyan, A.S., Nivarthi, H., Rumi, E., Milosevic, J.D., et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. The New England journal of medicine 369:25 (2013), 2379–2390.
[5] Nangalia, J., Massie, C.E., Baxter, E.J., Nice, F.L., Gundem, G., Wedge, D.C., et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. The New England journal of medicine 369:25 (2013), 2391–2405.
[6] Yamaoka, K., Saharinen, P., Pesu, M., Holt, V.E. 3rd, Silvennoinen, O., O'Shea, J.J., The Janus kinases (Jaks). Genome Biol, 5(12), 2004, 253.
[7] Hammaren, H.M., Ungureanu, D., Grisouard, J., Skoda, R.C., Hubbard, S.R., Silvennoinen, O., ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation. Proc Natl Acad Sci U S A 112:15 (2015), 4642–4647.
[8] Vainchenker, W., Constantinescu, S.N., JAK/ STAT signaling in hematological malignancies. Oncogene 32:21 (2013), 2601–2613.
[9] James, C., Ugo, V., Le Couedic, J.P., Staerk, J., Delhommeau, F., Lacout, C., et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434:7037 (2005), 1144–1148.
[10] Bandaranayake, R.M., Ungureanu, D., Shan, Y., Shaw, D.E., Silvennoinen, O., Hubbard, S.R., Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Nat Struct Mol Biol 19:8 (2012), 754–759.
[11] Yan, D., Hutchison, R.E., Mohi, G., Critical requirement for Stat5 in a mouse model of polycythemia vera. Blood 119:15 (2012), 3539–3549.
[12] Duek, A., Lundberg, P., Shimizu, T., Grisouard, J., Karow, A., Kubovcakova, L., et al. Loss of Stat1 decreases megakaryopoiesis and favors erythropoiesis in a JAK2-V617F-driven mouse model of MPNs. Blood 123:25 (2014), 3943–3950.
[13] Grisouard, J., Shimizu, T., Duek, A., Kubovcakova, L., Hao-Shen, H., Dirnhofer, S., et al. Deletion of Stat3 in hematopoietic cells enhances thrombocytosis and shortens survival in a JAK2-V617F mouse model of MPN. Blood 125:13 (2015), 2131–2140.
[14] Lacout, C., Pisani, D.F., Tulliez, M., Gachelin, F.M., Vainchenker, W., Villeval, J.L., JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 108:5 (2006), 1652–1660.
[15] 1Tiedt, R., Hao-Shen, H., Sobas, M.A., Looser, R., Dirnhofer, S., Schwaller, J., et al. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood 111:8 (2008), 3931–3940.
[16] Hasan, S., Lacout, C., Marty, C., Cuingnet, M., Solary, E., Vainchenker, W., et al. JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNalpha. Blood 122:8 (2013), 1464–1477.
[17] 17.Li, J., Kent, D.G., Godfrey, A.L., Manning, H., Nangalia, J., Aziz, A., et al. JAK2V617F homozygosity drives a phenotypic switch in myeloproliferative neoplasms, but is insufficient to sustain disease. Blood 123:20 (2014), 3139–3151.
[18] Scott, L.M., Scott, M.A., Campbell, P.J., Green, A.R., Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood 108:7 (2006), 2435–2437.
[19] Scott, L.M., The JAK2 exon 12 mutations: a comprehensive review. American journal of hematology 86:8 (2011), 668–676.
[20] Passamonti, F., Elena, C., Schnittger, S., Skoda, R.C., Green, A.R., Girodon, F., et al. Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations. Blood 117:10 (2011), 2813–2816.
[21] Pikman, Y., Lee, B.H., Mercher, T., McDowell, E., Ebert, B.L., Gozo, M., et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS medicine, 3(7), 2006, e270.
[22] Pardanani, A.D., Levine, R.L., Lasho, T., Pikman, Y., Mesa, R.A., Wadleigh, M., et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 108:10 (2006), 3472–3476.
[23] Defour, J.P., Chachoua, I., Pecquet, C., Constantinescu, S.N., Oncogenic activation of MPL/ thrombopoietin receptor by 17 mutations at W515: implications for myeloproliferative neoplasms. Leukemia, 2015.
[24] Ding, J., Komatsu, H., Wakita, A., Kato-Uranishi, M., Ito, M., Satoh, A., et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood 103:11 (2004), 4198–4200.
[25] Cabagnols, X., Favale, F., Pasquier, F., Messaoudi, K., Defour, J.P., lanotto JC, et al. Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythemia patients. Blood 127:3 (2016), 333–342.
[26] Milosevic Feenstra, J.D., Nivarthi, H., Gisslinger, H., Leroy, E., Rumi, E., Chachoua, I., et al. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood 127:3 (2016), 325–332.
[27] Vannucchi, A.M., Antonioli, E., Guglielmelli, P., Pancrazzi, A., Guerini, V., Barosi, G., et al. Characteristics and clinical correlates of MPL 515 W>L/K mutation in essential thrombocythemia. Blood 112:3 (2008), 844–847.
[28] Guglielmelli, P., Pancrazzi, A., Bergamaschi, G., Rosti, V., Villani, L., Antonioli, E., et al. Anaemia characterises patients with myelofibrosis harbouring Mpl mutation. British journal of haematology 137:3 (2007), 244–247.
[29] Broseus, J., Park, J.H., Carillo, S., Hermouet, S., Girodon, F., Presence of calreticulin mutations in JAK2-negative polycythemia vera. Blood 124:26 (2014), 3964–3966.
[30] Lundberg, P., Karow, A., Nienhold, R., Looser, R., Hao-Shen, H., Nissen, I., et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood 123:14 (2014), 2220–2228.
[31] Cabagnols, X., Defour, J.P., Ugo, V., Ianotto, J.C., Mossuz, P., Mondet, J., et al. Differential association of calreticulin type 1 and type 2 mutations with myelofibrosis and essential thrombocytemia: relevance for disease evolution. Leukemia 29:1 (2015), 249–252.
[32] Marty, C., Pecquet, C., Nivarthi, H., El-Khoury, M., Chachoua, I., Tulliez, M., et al. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. Blood 127:10 (2016), 1317–1324.
[33] Michalak, M., Groenendyk, J., Szabo, E., Gold, L.I., Opas, M., Calreticulin, a multiprocess calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 417:3 (2009), 651–666.
[34] Balligand, T., Achouri, Y., Pecquet, C., Chachoua, I., Nivarthi, H., Marty, C., et al. Pathologic activation of thrombopoietin receptor and JAK2-STAT5 pathway by frameshift mutants of mouse calreticulin. Leukemia, 2016.
[35] Chachoua, I., Pecquet, C., El-Khoury, M., Nivarthi, H., Albu, R.I., Marty, C., et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood 127:10 (2016), 1325–1335.
[36] Araki, M., Yang, Y., Masubuchi, N., Hironaka, Y., Takei, H., Morishita, S., et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood 127:10 (2016), 1307–1316.
[37] Tefferi, A., Lasho, T.L., Finke, C., Belachew, A.A., Wassie, E.A., Ketterling, R.P., et al. Type 1 vs type 2 calreticulin mutations in primary myelofibrosis: differences in phenotype and prognostic impact. Leukemia 28:7 (2014), 1568–1570.
[38] Oh, S.T., Simonds, E.F., Jones, C., Hale, M.B., Goltsev, Y., Gibbs, K.D. Jr., et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood 116:6 (2010), 988–992.
[39] 39.Lasho, T.L., Pardanani, A., Tefferi, A., LNK mutations in JAK2 mutation-negative erythrocytosis. The New England journal of medicine 363:12 (2010), 1189–1190 12.
[40] Velazquez, L., Cheng, A.M., Fleming, H.E., Furlonger, C., Vesely, S., Bernstein, A., et al. Cytokine signaling and hematopoietic homeostasis are disrupted in Lnk-deficient mice. J Exp Med 195:12 (2002), 1599–1611.
[41] Rampal, R., Al-Shahrour, F., Abdel-Wahab, O., Patel, J.P., Brunel, J.P., Mermel, C.H., et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood 123:22 (2014), e123–e133.
[42] Delhommeau, F., Dupont, S., Della Valle, V., James, C., Trannoy, S., Masse, A., et al. Mutation in TET2 in myeloid cancers. The New England journal of medicine 360:22 (2009), 2289–2301.
[43] Mahfoudhi, E., Secardin, L., Scourzic, L., Bernard, O., Vainchenker, W., Plo, I., Properties and biological roles of TET proteins during embryogenesis and in hematopoiesis. Medecine sciences : M/S 31:3 (2015), 268–274.
[44] Pronier, E., Almire, C., Mokrani, H., Vasanthakumar, A., Simon, A., da Costa Reis Monte Mor, B., et al. Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulo-monocytic differentiation of human hematopoietic progenitors. Blood, 2011.
[45] Quivoron, C., Couronne, L., Della Valle, V., Lopez, C.K., Plo, I., Wagner-Ballon, O., et al. TET2 Inactivation Results in Pleiotropic Hematopoietic Abnormalities in Mouse and Is a Recurrent Event during Human Lymphomagenesis. Cancer cell 20:1 (2011), 25–38.
[46] Busque, L., Patel, J.P., Figueroa, M.E., Vasanthakumar, A., Provost, S., Hamilou, Z., et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet 44:11 (2012), 1179–1181.
[47] Ortmann, C.A., Kent, D.G., Nangalia, J., Silber, Y., Wedge, D.C., Grinfeld, J., et al. Effect of mutation order on myeloproliferative neoplasms. The New England journal of medicine 372:7 (2015), 601–612.
[48] Challen, G.A., Sun, D., Jeong, M., Luo, M., Jelinek, J., Berg, J.S., et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 44:1 (2012), 23–31.
[49] Score, J., Hidalgo-Curtis, C., Jones, A.V., Winkelmann, N., Skinner, A., Ward, D., et al. Inactivation of polycomb repressive complex 2 components in myeloproliferative and myelodysplastic/myeloproliferative neoplasms. Blood 119:5 (2012), 1208–1213.
[50] Gelsi-Boyer, V., Trouplin, V., Adelaide, J., Bonansea, J., Cervera, N., Carbuccia, N., et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. British journal of haematology 145:6 (2009), 788–800.
[51] Vannucchi, A.M., Lasho, T.L., Guglielmelli, P., Biamonte, F., Pardanani, A., Pereira, A., et al. Mutations and prognosis in primary myelofibrosis. Leukemia 27:9 (2013), 1861–1869.
[52] Abdel-Wahab, O., Gao, J., Adli, M., Dey, A., Trimarchi, T., Chung, Y.R., et al. Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. J Exp Med 210:12 (2013), 2641–2659.
[53] Figueroa, M.E., Abdel-Wahab, O., Lu, C., Ward, P.S., Patel, J., Shih, A., et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer cell 18:6 (2010), 553–567.
[54] Yoshida, K., Sanada, M., Shiraishi, Y., Nowak, D., Nagata, Y., Yamamoto, R., et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478:7367 (2011), 64–69.
[55] Harutyunyan, A., Klampfl, T., Cazzola, M., Kralovics, R., p53 lesions in leukemic transformation. The New England journal of medicine 364:5 (2011), 488–490.
[56] Klampfl, T., Harutyunyan, A., Berg, T., Gisslinger, B., Schalling, M., Bagienski, K., et al. Genome integrity of myeloproliferative neoplasms in chronic phase and during disease progression. Blood 118:1 (2011), 167–176.
[57] Olcaydu, D., Harutyunyan, A., Jager, R., Berg, T., Gisslinger, B., Pabinger, I., et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet 41:4 (2009), 450–454.
[58] Koren, A., Handsaker, R.E., Kamitaki, N., Karlic, R., Ghosh, S., Polak, P., et al. Genetic variation in human DNA replication timing. Cell 159:5 (2014), 1015–1026.
[59] 59.Soler, G., Bernal-Vicente, A., Anton, A.I., Torregrosa, J.M., Caparros-Perez, E., Sanchez-Serrano, I., et al. The JAK2 46/1 haplotype does not predispose to CALR-mutated myeloproliferative neoplasms. Ann Hematol 94:5 (2015), 789–794.
[60] Hinds, D.A., Barnholt, K.E., Zehnder, J.L., Kiefer, A.K., Do, C.B., Eriksson, N., et al. A germline variant in the TERT gene is a novel predisposition allele associated with myeloproliferative neoplasms., 54nd Annual Meeting of the American-Society-of-Hematology (ASH), Atlanta(Myeloproliferative Syndromes - Basic Science: Signaling & Genetics), 2012.
[61] Tapper, W., Jones, A.V., Kralovics, R., Harutyunyan, A.S., Zoi, K., Leung, W., et al. Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nat Commun., 6, 2015, 6691.
[62] Harutyunyan, A.S., Giambruno, R., Krendl, C., Stukalov, A., Klampfl, T., Berg, T., et al. Germline RBBP6 mutations in familial myeloproliferative neoplasms. Blood 127:3 (2016), 362–365.
[63] Saliba, J., Saint-Martin, C., Di Stefano, A., Lenglet, G., Marty, C., Keren, B., et al. Germline duplication of ATG2B and GSKIP predisposes to familial myeloid malignancies. Nat Genet 47:10 (2015), 1131–1140.
[64] Pasquier, F., Cabagnols, X., Secardin, L., Plo, I., Vainchenker, W., Myeloproliferative neoplasms: JAK2 signaling pathway as a central target for therapy. 4; Clin Lymphoma Myeloma Leuk. 14:Suppl (2014), S23–S35.
[65] Harrison, C., Kiladjian, J.J., Al-Ali, H.K., Gisslinger, H., Waltzman, R., Stalbovskaya, V., et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. The New England journal of medicine 366:9 (2012), 787–798.
[66] Tefferi, A., Vaidya, R., Caramazza, D., Finke, C., Lasho, T., Pardanani, A., Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 29:10 (2011), 1356–1363.
[67] Verger, E., Cassinat, B., Chauveau, A., Dosquet, C., Giraudier, S., Schlageter, M.H., et al. Clinical and molecular response to interferon-alpha therapy in essential thrombocythemia patients with CALR mutations. Blood 126:24 (2015), 2585–2591.