[en] The curcumin degradation represents a significant limitation for its applications. The stability of free curcumin (FC) and immobilized curcumin in complex particles (ComPs) based on different polysaccharides was studied under the action of several factors. Ultraviolet-visible (UV-VIS) and Fourier-transform infrared (FTIR) spectroscopy proved the FC photodegradation and its role as a metal chelator: 82% of FC and between 26% and 39.79% of curcumin within the ComPs degraded after exposure for 28 days to natural light. The degradation half-life (t1/2) decreases for FC when the pH increases, from 6.8 h at pH = 3 to 2.1 h at pH = 9. For curcumin extracted from ComPs, t1/2 was constant (between 10 and 13 h) and depended on the sample’s composition. The total phenol (TPC) and total flavonoids (TFC) content values increased by 16% and 13%, respectively, for FC exposed to ultraviolet light at λ = 365 nm (UVA), whereas no significant change was observed for immobilized curcumin. Antioxidant activity expressed by IC50 (µmoles/mL) for FC exposed to UVA decreased by 29%, but curcumin within ComPs was not affected by the UVA. The bovine serum albumin (BSA) adsorption efficiency on the ComPs surface depends on the pH value and the cross-linking degree. ComPs have a protective role for the immobilized curcumin.
Research Center/Unit :
Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit Center for Education and Research on Macromolecules (CERM)
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Iurciuc-Tincu, Camelia-Elena; Grigore T. Popa University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Technology, Faculty, Iasi, Romania > Gheorghe Asachi Technical University, Faculty of Chemical Engineering and Protection of the Environment, Department of Natural and Synthetic Polymers, Iasi, Romania
Atanase, Leonard Ionut; Apollonia University, Faculty of Dental Medicine, Department of Biomaterials, Iasi, Romania
Jérôme, Christine ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Sol, Vincent; University of Limoges, Laboratoire PEIRENE EA 7500, France
Martin, Patrick; Université d’Artois,Unité Transformations & Agroressources, UniLaSalle, Béthune, France
Popa, Marcel; Gheorghe Asachi Technical University, Faculty of Chemical Engineering and Protection of the Environment, Department of Natural and Synthetic Polymers, Iasi, Romania > Academy of Romanian Scientists, Bucharest, Romania
Ochiuz, Lăcrămioara; Grigore T. Popa University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Technology, Faculty, Iasi, Romania
Language :
English
Title :
Polysaccharides-based complex particles’ protective role on the stability and bioactivity of immobilized curcumin
Publication date :
17 March 2021
Journal title :
International Journal of Molecular Sciences
ISSN :
1661-6596
eISSN :
1422-0067
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Switzerland
Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of popula-tion‐based studies. Lancet 2017, 390, 2769–2778, doi:10.1016/S0140‐6736(17)32448‐0.
Yamamoto‐Furusho, J.K.; Sarmiento‐Aguilar, A.; Toledo‐Mauriño, J.J.; Bozada‐Gutiérrez, K.E.; Bosques‐Padilla, F.J.; Mar-tínez‐Vázquez, M.A.; Marroquín‐Jiménez, V.; García‐Figueroa, R.; Jaramillo‐Buendía, C.; MirandaCordero, R.M.; et al. Incidence and prevalence of inflammatory bowel disease in Mexico from a nationwide cohort study in a period of 15 years (2000–2017). Medicine 2019, 98, e16291, doi:10.1097/MD.0000000000016291.
Iurciuc‐Tincu, C.E.; Atanase, L.I.; Ochiuz, L.; Jérôme, C.; Sole, V.; Martin, P.; Popa, M. Curcumin‐loaded polysaccharides‐based complex particles obtained by polyelectrolyte complexation and ionic gelation, I‐Particles obtaining and characterization. Int. J. Biol. Macromol. 2020, 147, 629–642, doi:10.1016/j.ijbiomac.2019.12.247.
Larussa, T.; Imeneo, M.; Luzza, F. Potential role of nutraceutical compounds in inflammatory bowel disease. World J. Gastro-enterol. 2017, 23, 2483–2492, doi:10.3748/wjg.v23.i14.2483.
Kinney, S.R.M.; Carlson, L.; Ser‐Dolansky, J.; Thompson, C.; Shah, S.; Gambrah, A.; Xing, W.; Schneider, S.S.; Mathias, C.B. Curcumin ingestion inhibits mastocytosis and suppresses intestinal anaphylaxis in a murine model of food allergy. PLoS ONE 2015, 10, e0132467, doi:10.1371/journal.pone.0132467.
Larasatil, Y.A.; Yoneda‐Kato, N.; Nakamae, I.; Yokoyama, T.; Meiyanto, E.; Kato, J. Curcumin targets multiple enzymes involved in the ROS metabolic pathway to suppress tumor cell growth. Sci. Rep. 2018, 8, 2039, doi:10.1038/s41598‐018‐20179‐6.
Moghadamtousi, S.Z.; Kadir, H.A.; Hassandarvish, P.; Tajik, H.; Abubakar, S.; Zandi, K. A review on antibacterial, antiviral, and antifungal activity of curcumin, Biomed. Res. Int. 2014, 2014, 186864, doi:10.1155/2014/186864.
Haddad, M.; Sauvain, M.; Deharo, E. Curcuma as a parasiticidal agent: A review. Planta Med. 2011, 77, 672–678, doi:10.1055/s‐0030‐1250549.
Gunes, H.; Gulen, D.; Mutlu, R.; Gumus, A.; Tas, T.; Topkaya, A.E. Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol. Ind. Health 2016, 32, 246–250, doi:10.1177%2F0748233713498458.
Kharat, M.; Du, Z.; Zhang, G.; McClements, D.J. Physical and chemical stability of curcumin in aqueous solutions and emul-sions: Impact of pH, temperature, and molecular environment. J. Agric. Food Chem. 2017, 65, 1525–1532, doi:10.1021/acs.jafc.6b04815.
Shen, L.; Ji, H.F. The pharmacology of curcumin: Is it the degradation products? Trends Mol. Med. 2012, 18, 138–144, doi:10.1016/j.molmed.2012.01.004.
Priyadarsini, K.I. Chemical and structural features influencing the biological activity of curcumin. Curr. Pharm. Des. 2013, 19, 2093–2100, doi:10.2174/1381612811319110010.
Price, L.C.; Buescher, R.W. Kinetics of alkaline degradation of the food pigments curcumin and curcuminoids. J. Food Sci. 1997, 62, 267–269, doi:10.1111/j.1365‐2621.1997.tb03982.x.
Wang, Y.J.; Pan, M.H.; Cheng, A.L.; Lin, L.I.; Ho, Y.S.; Hsieh, C.Y.; Lin, J.K. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal. 1997, 15, 1867–1876, doi:10.1016/S0731‐7085(96)02024‐9.
Cañamares, M.V.; Garcia‐Ramos, J.V.; Sanchez‐Cortes, S. Degradation of curcumin dye in aqueous solution and on Ag nano-particles studied by ultraviolet‐visible absorption and surface‐enhanced Raman spectroscopy. Appl. Spectrosc. 2006, 60, 1386–1391, doi:10.1366%2F000370206779321337.
Priyadarsini, K.I. The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules 2014, 19, 20091–20112, doi:10.3390/molecules191220091.
Rege, S.A.; Arya, M.; Momin, S.A. Structure activity relationship of tautomers of curcumin: A review. Ukr. Food J. 2019, 8, 45–60, doi:10.24263/2304‐974x‐2019‐8‐1‐6.
Priyadarsini, K.I. Photophysics, photochemistry and photobiology of curcumin: Studies from organic solutions, bio‐mimetics and living cells. J. Photoch. Photobio. C Photochem. Rev. 2009, 10, 81–95, doi:10.1016/j.jphotochemrev.2009.05.001.
Khurana, A.; Ho, C.T. High performance liquid chromatographic analysis of curcuminoids and their photo‐oxidative decom-position compounds in Curcuma Longa L. J. Liq. Chromatogr. 1988, 11, 2295–2304, doi:10.1080/01483918808067200.
Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin. J. Med. Chem. 2017, 60, 1620–1637, doi:10.1021/acs.jmedchem.6b00975.
Schneider, C.; Gordon, O.N.; Edwards, R.L.; Luis, P.B. Degradation of curcumin: From mechanism to biological implications. J. Agric. Food Chem. 2015, 63, 7606–7614, doi:10.1021/acs.jafc.5b00244.
Bagchi, D.; Chaudhuri, S.; Sardar, S.; Choudhury, S.; Polley, N.; Lemmens, P.; Pal, S.K. Modulation of Stability and functionality of a phytoantioxidant by weakly interacting metal ions: Curcumin in aqueous solution, RSC Adv. 2015, 5, 102516–102524, doi:10.1039/C5RA21593E.
Banerjee, S.; Chakravarty, A.R. Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity. Acc. Chem. Res. 2015, 48, 2075–2083, doi:10.1021/acs.accounts.5b00127.
Wright, J.S. Predicting the antioxidant activity of curcumin and curcuminoids. J. Mol. Struct. 2002, 591, 207–217, doi:10.1016/S0166‐1280(02)00242‐7.
Iurciuc‐Tincu, C.E.; Stamate Cretan, M.; Purcar, V.; Popa, M.; Daraba, O.M.; Atanase, L.I.; Ochiuz, L. Drug delivery system based on ph‐sensitive biocompatible poly(2‐vinyl pyridine)‐b‐poly(ethylene oxide) nanomicelles loaded with curcumin and 5‐fluorouracil. Polymers 2020, 12, 1450, doi:10.3390/polym12071450.
Suwantong, O.; Opanasopit, P.; Ruktanonchai, U.; Supaphol, P. Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer 2007, 48, 7546–7557, doi:10.1016/j.polymer.2007.11.019.
Jiang, T.; Liao, W.; Charcosset, C. Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications. Food Res. Int. 2020, 132, 109035, doi:10.1016/j.foodres.2020.109035.
Hua, S.; Marks, E.; Schneider, J.J.; Keely, S. Advances in oral nano‐delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomedicine 2015, 11, 1117–1132, doi:10.1016/j.nano.2015.02.018.
Beloqui, A.; Coco, R.; Memvanga, P.B.; Ucakar, B.; des Rieux, A.; Preat, V. pH‐sensitive nanoparticles for colonic delivery of curcumin in inflammatory bowel disease. Int. J. Pharm. 2014, 473, 203–212, doi:10.1016/j.ijpharm.2014.07.009.
Su, J.; Tao, X.; Xu, H.; Chen, J.F. Facile encapsulation of nanoparticles in nanoorganized bio‐polyelectrolyte microshells. Polymer 2007, 48, 7431–7443, doi:10.1016/j.polymer.2007.09.048.
Guzman‐Villanueva, D.; El‐Sherbiny, I.M.; Herrera‐Ruiz, D.; Smyth, H.D.C. Design and in vitro evaluation of a new nano‐microparticulate system for enhanced aqueous‐phase solubility of curcumin. Biomed. Res. Int. 2013, 2013, 724763, doi:10.1155/2013/724763.
Chuah, L.H.; Billa, N.; Roberts, C.J.; Burley, J.C.; Manickam, S. Curcumin‐containing chitosan nanoparticles as a potential mucoadhesive delivery system to the colon. Pharm. Dev. Technol. 2011, 18, 591–599, doi:10.3109/10837450.2011.640688.
Yang, F.; Xia, S.; Tan, C.; Zhang, X. Preparation and evaluation of chitosan‐calcium‐gellan gum beads for controlled release of protein. Eur. Food Res. Technol. 2013, 237, 467–479, doi:10.1007/s00217‐013‐2021‐y.
Prezotti, F.G.; Boni, F.I.; Ferreira, N.N.; Silva, D.S.; Campana‐Filho, S.P.; Almeida, A.; Vasconcelos, T.; Gremião, M.P.D.; Cury, B.S.F.; Sarmento, B. Gellan Gum/pectin beads are safe and efficient for the targeted colonic delivery of resveratrol. Polymers 2018, 10, 50–64, doi:10.3390/polym10010050.
Zainal Ariffin, S.H.; Yeen, W.W.; Zainol Abidin, I.Z.; Megat Abdul Wahab, R.; Zainal Ariffin, Z.; Senafi, S. Cytotoxicity effect of degraded and undegraded kappa and iota carrageenan in the human intestine and liver cell lines. BMC Complement. Altern. Med. 2014, 14, 508–524, doi:10.1186/1472‐6882‐14‐508.
Li, C.; Hein, S.; Wang, K. Chitosan‐carrageenan polyelectrolyte complex for the delivery of protein drugs. Int. Sch. Res. Not. Biomater. 2013, 2013, 629807, doi:10.5402/2013/629807.
Zheng, B.; Zhang, Z.; Chen, F.; Luo, X.; McClements, D.J. Impact of delivery system type on curcumin stability: Comparison of curcumin degradation in aqueous solutions, emulsions, and hydrogel beads. Food Hydrocoll. 2017, 71, 187–197, doi:10.1016/j.foodhyd.2017.05.022.
Chen, S.; Li, Q.; McClements, D.J.; Han, Y.; Dai, L.; Mao, L.; Gao, Y. Co‐delivery of curcumin and piperine in zein‐carrageenan core‐shell nanoparticles: Formation, structure, Stability and in vitro gastrointestinal digestion. Food Hydrocoll. 2020, 99, 105334, doi:10.1016/j.foodhyd.2019.105334.
Li, Q.; Dunn, E.T.; Grandmaison, E.W.; Goosen, M.F.A. Applications and Properties of Chitosan. J. Bioact. Compat. Polym. 1992, 7, 370–397, doi:10.1177/088391159200700406.
Amiji, M. Platelet adhesion and activation on an amphoteric chitosan derivative bearing sulfonate groups. Colloids Surf. B. 1998, 10, 263–271, doi:10.1016/S0927‐7765(98)00005‐8.
Hu, J.; Li, S.; Liu, B. Adsorption of BSA onto sulfonated microspheres. Biochem. Eng. J. 2005, 23, 259–263, doi:10.1016/j.bej.2005.01.018.
Lee, W.‐H.; Loo, C.‐Y.; Bebawy, M.; Luk, F.; Mason, R.S.; Rohanizadeh, R. Curcumin and its derivatives: Their application in neuropharmacology and neuroscience in the 21st century. Curr. Neuropharmacol. 2013, 11, 338–378. Available online: http://www.eurekaselect.com/node/112339/article (accessed on 1 April 2020).
Souza, C.R.A.; Osme, S.F.; Gloria, M.B.A. Stability of curcuminoid pigments in model systems. J. Food Process. Preserv. 1997, 21, 353–363, doi:10.1111/j.1745‐4549.1997.tb00789.x.
Wanninger, S.; Lorenz, V.; Subhan, A.; Edelmann, F.T. Metal complexes of curcumin–synthetic strategies, structures and medicinal applications. Chem. Soc. Rev. 2015, 44, 4986–5002, doi:10.1039/C5CS00088B.
Chen, X.; Zou, L.Q.; Niu, J.; Liu, W.; Peng, S.F.; Liu, C.M. The Stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules 2015, 20, 14293–14311 doi:10.3390/molecules200814293.
Moussawi, R.N.; Patra, D. Modification of nanostructured ZnO surfaces with curcumin: Fluorescence‐based sensing for arsenic and improving arsenic removal by ZnO. RSC Adv. 2016, 6, 17256–17268, doi:10.1039/C5RA20221C.
Khalil, M.I.; AL‐Zahem, A.M.; Qunaibit, M.M. Synthesis, characterization, and antitumor activity of binuclear curcumin–metal (II) hydroxo complexes. Med. Chem. Res. 2014, 23, 1683–1689, doi:10.1007/s00044‐013‐0727‐9.
Kolev, T.M.; Velcheva, E.A.; Stamboliyska, B.A.; Spiteller, M. DFT and experimental studies of the structure and vibrational spectra of curcumin, Int. J. Quantum Chem. 2005, 102, 1069–1079, doi:10.1002/qua.20469.
Ismail, E.H.; Sabry, D.Y.; Mahdy, H.; Khalil, M.M.H. Synthesis and characterization of some ternary metal complexes of cur-cumin with 1,10‐phenanthroline and their Anticancer Applications. J. Sci. Res. 2014, 6, 509–519, doi:10.3329/jsr.v6i3.18750.
Bich, V.T.; Thuy, N.T.; Binh, N.T.; Huong, N.T.M.; Yen, P.N.D.; Luong, T.T. Structural and spectral properties of curcumin and metal‐curcumin complex derived from turmeric (Curcuma longa). In Physics and Engineering of New Materials; Cat, D.T., Pucci, A., Wandelt, K., Eds.; Springer Proceedings in Physics; Physics and Engineering of New Materials; Springer: Ber-lin/Heidelberg, Germany, 2009; pp. 271–278, doi:10.1007/978‐3‐540‐88201‐5_31.
Pallikkavil, R.; Basheer Ummathur, M.; Sreedharan, S.; Krishnankutty, K. Synthesis, characterization and antimicrobial studies of Cd(II), Hg(II), Pb(II), Sn(II) and Ca(II) complexes of curcumin. Main Group Met. Chem. 2013, 36, 123–127, doi:10.1515/mgmc‐2013‐0023.
Zebib, B.; Mouloungui, Z.; Noirot, V. Stabilization of curcumin by complexation with divalent cations in glycerol/water sys-tem. Bioinorg Chem. Appl. 2010, 2010, 292760, doi:10.1155/2010/292760.
Nguyen, T.T.H.; Si, J.; Kang, C.; Chung, B.; Chung, D.; Kim, D. Facile preparation of water soluble curcuminoids extracted from turmeric (Curcuma longa L.) powder by using steviol glucosides. Food Chem. 2017, 214, 366–373, doi:10.1016/j.foodchem.2016.07.102.
Giri, A.; Goswami, N.; Sasmal, C.; Polley, N.; Majumdar, D.; Sarkar, S.; Bandyopadhyay, S.N.; Singhac, A.; Pal, S.K. Unprece-dented catalytic activity of Mn3O4 nanoparticles: Potential lead of a sustainable therapeutic agent for hyperbilirubinemia. RSC Adv. 2014, 4, 5075–5079, doi:10.1039/C3RA45545A.
Daniel‐da‐Silva, A.L.; Lopes, A.B.; Gil, A.M.; Correia, R.N. Synthesis and characterization of porous κ‐carrageenan/calcium phosphate nanocomposite scaffolds. J. Mater. Sci. 2007, 42, 8581–8591, doi:10.1007/s10853‐007‐1851‐z;.
Varghese, J.S.; Chellappa, N.N.; Fathima, N. Gelatin‐Carrageenan Hydrogels: Role of Pore Size Distribution on Drug Delivery Process. Colloids Surf. B Biointerfaces 2014, 113, 346–351, doi:10.1016/j.colsurfb.2013.08.049.
Thrimawithana, T.R.; Young, S.; Dunstan, D.E.; Alany, R.G. Texture and rheological characterization of kappa and iota carra-geenan in the presence of counterions. Carbohydr. Polym. 2010, 82, 69–77, doi:10.1016/j.carbpol.2010.04.024.
Li, J.; Yang, B.; Qian, Y.; Wang, Q.; Han, R.; Hao, T.; Shu, Y.; Zhang, Y.; Yao, F.; Wang, C. Iota‐carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose‐derived MSCs in vitro. J. Biomed. Mater. Res. Part. B. 2015, 103, 1498–1510, doi:10.1002/jbm.b.33339).
Gordon, O.N.; Luis, P.B.; Sintim, H.O.; Schneider, C. Unraveling curcumin degradation: Autoxidation proceeds through spi-roepoxide and vinylether intermediates en route to the main bicyclopentadione, J. Biol. Chem. 2015, 290, 4817–4828, doi:10.1074/jbc.m114.618785.
Griesser, M.; Pistis, V.; Suzuki, T.; Tejera, N.; Pratt, D.A.; Schneider, C. Autoxidative and cyclooxygenase‐2 catalyzed trans-formation of the dietary chemopreventive agent curcumin. J. Biol. Chem. 2011, 286, 1114–1124, doi:10.1074/jbc.M110.178806.
Vareed, S.K.; Kakarala, M.; Ruffin, M.T.; Crowell, J.A.; Normolle, D.P.; Djuric, Z.; Brenner, D.E. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 1411–1417, doi:10.1158/1055‐9965.EPI‐07‐2693.
Naksuriya, O.; van Steenbergen, M.J.; Torano, J.S.; Okonogi, S.; Hennink, W.E. A kinetic degradation study of curcumin in its free form and loaded in polymeric micelles. AAPS J. 2016, 18, 777–787, doi:10.1208/s12248‐015‐9863‐0.
Hussain, S.A.; Hameed, A.; Nazir, Y.; Naz, T.; Wu, Y.; Suleria, H.A.R.; Song, Y. Microencapsulation and the characterization of polyherbal formulation (PHF) rich in natural polyphenolic compounds. Nutrients 2018, 10, 843, doi:10.3390/nu10070843.
Dai, Z.; Ronholm, J.; Tian, Y.; Sethi, B.; Cao, X. Sterilization techniques for biodegradable scaffolds in tissue engineering ap-plications. J. Tissue Eng. 2016, 17, 2041731416648810, doi:10.1177%2F2041731416648810.
Mori, M.; Hamamoto, A.; Takahashi, A.; Nakano, M.; Wakikawa, N.; Tachibana, S.; Ikehara, T.; Nakaya, Y.; Akutagawa, M.; Kinouchi, Y. Development of a new water sterilization device with a 365 nm UV‐LED. Med. Bio. Eng. Comput. 2007, 45, 1237–1241, doi:10.1007/s11517‐007‐0263‐1.
Sepahpour, S.; Selamat, J.; Manap, M.Y.A.; Khatib, A.; Razis, A.F.A. Comparative analysis of chemical composition, antioxidant activity and quantitative characterization of some phenolic compounds in selected herbs and spices in different solvent extraction systems. Molecules 2018, 23, 402, doi:10.3390/molecules23020402.
Lee, J.W.; Kim, J.K.; Srinivasan, P.; Choi, J.; Kim, J.H.; Han, S.B.; Kim, D.J.; Byun, M.W. Effect of gamma irradiation on microbial analysis, antioxidant activity, sugar content and color of ready to‐use tamarind juice during storage. LWT Food Sci. Technol. 2009, 42, 101–105, doi:10.1016/j.lwt.2008.06.004.
Harrison, K.; Were, L.M. Effect of gamma irradiation on total phenolic content yield and antioxidant capacity of Almond skin extracts. Food Chem. 2007, 102, 932–937, doi:10.1016/j.foodchem.2006.06.034.
Taheri, S.; Abdullah, T.L.; Karimi, E.; Oskoueian, E.; Ebrahimi, M. Antioxidant Capacities and Total Phenolic Contents En-hancement with Acute Gamma Irradiation in Curcuma alismatifolia (Zingiberaceae) Leaves. Int. J. Mol. Sci. 2014, 15, 13077–13090, doi:10.3390/ijms150713077.
Lee, B.H.; Choi, H.A.; Kim, M.R.; Hong, J. Changes in chemical stability and bioactivities of curcumin by ultraviolet radiation. Food Sci. Biotechnol. 2013, 22, 279–282, doi:10.1007/s10068‐013‐0038‐4.
Surjadinata, B.B.; Jacobo‐Velázquez, D.A.; Cisneros‐Zevallos, L. UVA, UVB and UVC light enhances the biosynthesis of phenolic antioxidants in fresh‐cut carrot through a synergistic effect with wounding. Molecules 2017, 22, 668, doi:10.3390/molecules22040668.
Ydjedd, S.; Bouriche, S.; López‐Nicolás, R.; Sánchez‐Moya, T.; Frontela Saseta, C.; Ros‐Berruezo, G.; Rezgui, F.; Louaileche, H.; Kati, D.E. Effect of in vitro gastrointestinal digestion on encapsulated and nonencapsulated phenolic compounds of Carob (Ceratonia siliqua L.) pulp extracts and their antioxidant capacity. J. Agric. Food Chem. 2017, 65, 827–835, doi:10.1021/acs.jafc.6b05103.
Kim, J.‐H. Protein adsorption on polymer particles. In Encyclopedia of Surface and Colloid Science; Hubbart, A.T., Ed.; CRC Press by Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerland; 2002, pp. 4373–4381. Available online: https://books.google.ro/books?id=GobXwAOZIxcC (accessed on 1 May 2020).
Lima, P.H.L.; Pereira, S.V.A.; Rabello, R.B.; Rodriguez‐Castellón, E.; Beppu, M.M.; Chevallier, P.; Mantovani, D.; Vieira, R.S. Blood protein adsorption on sulfonated chitosan and k‐carrageenan films. Colloids Surf. B. Biointerfaces 2013, 111, 719–725, doi:10.1016/j.colsurfb.2013.06.002.
Betancourt, T.; Pardo, J.; Soo, K.; Peppas, N.A. Characterization of pH‐responsive hydrogels of poly(itaconic acid‐g‐ethylene glycol) prepared by UV‐initiated free radical polymerization as biomaterials for oral delivery of bioactive agents. J. Biomed. Mater. Res. A. 2010, 93, 175–188, doi:10.1002/jbm.a.32510.
Wu, H.Y.; Yang, K.M.; Chiang, P.Y. Roselle Anthocyanins: Antioxidant Properties and Stability to Heat and pH. Molecules 2018, 23, 1357, doi:10.3390/molecules23061357.
Hieu, T.Q.; Thao, D.T.T. Enhancing the solubility of curcumin metal complexes and investigating some of their biological activities, J. Chem. 2019, 2019, 8082195, doi:10.1155/2019/8082195.
Zhao, X.‐Z.; Jiang, T.; Wang, L.; Yang, H.; Zhang, S.; Zhou, P. Interaction of curcumin with Zn(II) and Cu(II) ions based on experiment and theoretical calculation, J. Mol. Struct. 2010, 984, 316–325, doi:10.1016/j.molstruc.2010.09.049.
Kumavat, S.D.; Chaudhari, Y.S.; Borole, P.; Mishra, P.; Shenghani, K.; Duvvuri, P. Degradation studies of curcumin. Int. J. Pharm. Sci. Rev. Res. 2013, 3, 50–55. Available online: http://www.ijprr.com/File_Folder/50‐55.pdf (accessed on 1 August 2019).
Mahato, R.I.; Narang, A.S. Chemical kinetics and stability. In Pharmaceutical Dosage Forms and Drug Delivery; Mahato, R.I., Narang, A.S., Eds.; Taylor and Francis Group, 6000, Broken Sound Parkway; CRC Press: New York, NY, USA, 2011; pp. 59–74. Available online: https://books.google.ro/books?id=3g3rUu‐f4qIC (accessed on 1 August 2019).
Flynn, E. Pharmacokinetic Compartmental Modeling. In xPharm: The Comprehensive Pharmacology Reference, Reference Module Biomedical Sciences; Enna, S.J., Bylund, D.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 1–5, doi:10.1016/B978‐008055232‐3.60033‐9.
Blass, B.E. In vitro ADME and In vivo Pharmacokinetics. In Basic Principles of Drug Discovery and Development; Blass, B.E., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 245–306, doi:10.1016/B978‐0‐12‐411508‐8.00006‐2.
Alhakmani, F.; Kumar, S.; Khan, S.A. Estimation of total phenolic content, in‐vitro antioxidant and anti‐inflammatory activity of flowers of Moringa oleifera. Asian Pac. J. Trop. Biomed. 2013, 3, 623–627, doi:10.1016/S2221‐1691(13)60126‐4.
Jimoh, M.O.; Afolayan, A.J.; Bayo Lewu, F. Antioxidant and phytochemical activities of Amaranthus caudatus L. harvested from different soils at various growth stages. Sci. Rep. 2019, 9, 12965, doi:10.1038/s41598‐019‐49276‐w.
Blainski, A.; Lopes, G.C.; Palazzo de Mello, J.C. Application and analysis of the Folin Ciocalteu method for the determination of the total phenolic content from Limonium Brasiliense L. Molecules 2013, 18, 6852–6865, doi:10.3390/molecules18066852.
Magalhães, L.M.; Inês, M.; Almeida, G.S.; Barreiros, L.; Reis, S.; Segundo, M.A. Automatic aluminum chloride method for routine estimation of total flavonoids in red wines and teas. Food Anal. Methods 2012, 5, 530–539, doi:10.1007/s12161‐011‐9278‐1.
Choi, C.W.; Kim, S.C.; Hwang, S.S.; Choi, B.K.; Ahn, H.J.; Lee, M.Y.; Park, S.H.; Kim, S.K. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay‐guided comparison. Plant. Sci. 2002, 163, 1161–1168, doi:10.1016/S0168‐9452(02)00332‐1.
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275, doi:10.1016/S0021‐9258(19)52451‐6).