[en] We theoretically study the propagation of an interacting Bose-Einstein condensate in a two-dimensional disorder potential, following the principle of an atom laser. The constructive interference between time-reversed scattering paths gives rise to coherent backscattering, which may be observed under the form of a sharp cone in the disorder-averaged angular backscattered current. As is found by the numerical integration of the Gross-Pitaevskii equation, this coherent backscattering cone is inversed when a non-vanishing interaction strength is present, indicating a crossover from constructive to destructive interferences. Numerical simulations based on the Truncated Wigner method allow one to go beyond the mean-field approach and show that dephasing renders this signature of antilocalisation hidden behind a structureless and dominant incoherent contribution as the interaction strength is increased and the injected density decreased, in a regime of parameters far away from the mean-field limit. However, despite a partial dephasing, we observe that this weak antilocalisation scenario prevails for finite interaction strengths, opening the way for an experimental observation with 87Rb atoms.
Disciplines :
Physics
Author, co-author :
Chrétien, Renaud ; Université de Liège - ULiège > Département de physique > Physique quantique statistique
Schlagheck, Peter ; Université de Liège - ULiège > Département de physique > Physique quantique statistique
Language :
English
Title :
Inversion of coherent backscattering with interacting Bose-Einstein condensates in two-dimensional disorder: A truncated Wigner approach
Publication date :
22 March 2021
Journal title :
Physical Review. A, Atomic, molecular, and optical physics
ISSN :
1050-2947
eISSN :
1094-1622
Publisher :
American Physical Society, United States - Maryland
Volume :
103
Pages :
033319
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
P.-E. Wolf and G. Maret, Phys. Rev. Lett. 55, 2696 (1985) PRLTAO 0031-9007 10.1103/PhysRevLett.55.2696.
P. E. Wolf, G. Maret, E. Akkermans, and R. Maynard, J. Phys. (Fr.) 49, 63 (1988) JOPQAG 0302-0738 10.1051/jphys:0198800490106300.
E. Akkermans, P. E. Wolf, R. Maynard, and G. Maret, J. Phys. (Fr.) 49, 77 (1988) JOPQAG 0302-0738 10.1051/jphys:0198800490107700.
M. P. Van Albada and A. Lagendijk, Phys. Rev. Lett. 55, 2692 (1985) PRLTAO 0031-9007 10.1103/PhysRevLett.55.2692.
B. Hapke, Icarus 157, 523 (2002) ICRSA5 0019-1035 10.1006/icar.2002.6853.
L. Margerin, M. Campillo, B. A. Van Tiggelen, and R. Hennino, Geophys. J. Int. 177, 571 (2009) GJINEA 0956-540X 10.1111/j.1365-246X.2008.04068.x.
D. S. Wiersma, M. P. van Albada, B. A. van Tiggelen, and A. Lagendijk, Phys. Rev. Lett. 74, 4193 (1995) PRLTAO 0031-9007 10.1103/PhysRevLett.74.4193.
J. de Rosny, A. Tourin, and M. Fink, Phys. Rev. Lett. 84, 1693 (2000) PRLTAO 0031-9007 10.1103/PhysRevLett.84.1693.
A. Tourin, A. Derode, P. Roux, B. A. van Tiggelen, and M. Fink, Phys. Rev. Lett. 79, 3637 (1997) PRLTAO 0031-9007 10.1103/PhysRevLett.79.3637.
F. Jendrzejewski, K. Müller, J. Richard, A. Date, T. Plisson, P. Bouyer, A. Aspect, and V. Josse, Phys. Rev. Lett. 109, 195302 (2012) PRLTAO 0031-9007 10.1103/PhysRevLett.109.195302.
B. L. Altshuler, D. Khmel'nitzkii, A. I. Larkin, and P. A. Lee, Phys. Rev. B 22, 5142 (1980) PRBMDO 0163-1829 10.1103/PhysRevB.22.5142.
G. Bergmann, Phys. Rep. 107, 1 (1984) PRPLCM 0370-1573 10.1016/0370-1573(84)90103-0.
T. Engl, J. Dujardin, A. Argüelles, P. Schlagheck, K. Richter, and J.-D. Urbina, Phys. Rev. Lett. 112, 140403 (2014) PRLTAO 0031-9007 10.1103/PhysRevLett.112.140403.
T. Engl, J. D. Urbina, K. Richter, and P. Schlagheck, Phys. Rev. A 98, 013630 (2018) 2469-9926 10.1103/PhysRevA.98.013630.
P. W. Anderson, Phys. Rev. 109, 1492 (1958) PHRVAO 0031-899X 10.1103/PhysRev.109.1492.
D. Vollhardt and P. Wölfle, Phys. Rev. B 22, 4666 (1980) PRBMDO 0163-1829 10.1103/PhysRevB.22.4666.
T. Karpiuk, N. Cherroret, K. L. Lee, B. Grémaud, C. A. Müller, and C. Miniatura, Phys. Rev. Lett. 109, 190601 (2012) PRLTAO 0031-9007 10.1103/PhysRevLett.109.190601.
S. Ghosh, N. Cherroret, B. Grémaud, C. Miniatura, and D. Delande, Phys. Rev. A 90, 063602 (2014) PLRAAN 1050-2947 10.1103/PhysRevA.90.063602.
K. L. Lee, B. Grémaud, and C. Miniatura, Phys. Rev. A 90, 043605 (2014) PLRAAN 1050-2947 10.1103/PhysRevA.90.043605.
T. Micklitz, C. A. Müller, and A. Altland, Phys. Rev. Lett. 112, 110602 (2014) PRLTAO 0031-9007 10.1103/PhysRevLett.112.110602.
J. P. R. Valdes and T. Wellens, Phys. Rev. A 93, 063634 (2016) 2469-9926 10.1103/PhysRevA.93.063634.
T. Wellens and B. Grémaud, Phys. Rev. Lett. 100, 033902 (2008) PRLTAO 0031-9007 10.1103/PhysRevLett.100.033902.
N. Finlayson and G. I. Stegeman, Appl. Phys. Lett. 56, 2276 (1990) APPLAB 0003-6951 10.1063/1.102938.
D. Hennig and G. Tsironis, Phys. Rep. 307, 333 (1999) PRPLCM 0370-1573 10.1016/S0370-1573(98)00025-8.
V. M. Agranovich and V. E. Kravtsov, Phys. Rev. B 43, 13691 (1991) PRBMDO 0163-1829 10.1103/PhysRevB.43.13691.
M. Hartung, T. Wellens, C. A. Müller, K. Richter, and P. Schlagheck, Phys. Rev. Lett. 101, 020603 (2008) PRLTAO 0031-9007 10.1103/PhysRevLett.101.020603.
T. Hartmann, J. Michl, C. Petitjean, T. Wellens, J.-D. Urbina, K. Richter, and P. Schlagheck, Ann. Phys. 327, 1998 (2012) APNYA6 0003-4916 10.1016/j.aop.2012.04.002.
R. Chrétien, J. Rammensee, J. Dujardin, C. Petitjean, and P. Schlagheck, Phys. Rev. A 100, 033606 (2019) 2469-9926 10.1103/PhysRevA.100.033606.
T. Geiger, A. Buchleitner, and T. Wellens, New J. Phys. 15, 115015 (2013) NJOPFM 1367-2630 10.1088/1367-2630/15/11/115015.
T. Scoquart, T. Wellens, D. Delande, and N. Cherroret, Phys. Rev. Research 2, 033349 (2020) 2643-1564 10.1103/PhysRevResearch.2.033349.
E. Wigner, Gruppentheorie und Ihre Anwendung auf die Quantenmechanik der Atomspektren (Vieweg+Teubner Verlag, Wiesbaden, 1931).
E. Wigner, Phys. Rev. 40, 749 (1932) PHRVAO 0031-899X 10.1103/PhysRev.40.749.
J. E. Moyal, Proc. Cambridge Philos. Soc. 45, 99 (1949) MPCPCO 0305-0041 10.1017/S0305004100000487.
M. J. Steel, M. K. Olsen, L. I. Plimak, P. D. Drummond, S. M. Tan, M. J. Collett, D. F. Walls, and R. Graham, Phys. Rev. A 58, 4824 (1998) PLRAAN 1050-2947 10.1103/PhysRevA.58.4824.
A. Sinatra, C. Lobo, and Y. Castin, J. Phys. B 35, 3599 (2002) JPAPEH 0953-4075 10.1088/0953-4075/35/17/301.
A. Polkovnikov, Phys. Rev. A 68, 053604 (2003) PLRAAN 1050-2947 10.1103/PhysRevA.68.053604.
R. G. Scott and D. A. W. Hutchinson, Phys. Rev. A 78, 063614 (2008) PLRAAN 1050-2947 10.1103/PhysRevA.78.063614.
J. Dujardin, A. Argüelles, and P. Schlagheck, Phys. Rev. A 91, 033614 (2015) PLRAAN 1050-2947 10.1103/PhysRevA.91.033614.
J. Dujardin, T. Engl, J. D. Urbina, and P. Schlagheck, Ann. Phys. 527, 629 (2015) ANPYA2 0003-3804 10.1002/andp.201500113.
J. Dujardin, T. Engl, and P. Schlagheck, Phys. Rev. A 93, 013612 (2016) 2469-9926 10.1103/PhysRevA.93.013612.
I. Bloch, T. W. Hänsch, and T. Esslinger, Phys. Rev. Lett. 82, 3008 (1999) PRLTAO 0031-9007 10.1103/PhysRevLett.82.3008.
W. Guerin, J.-F. Riou, J. P. Gaebler, V. Josse, P. Bouyer, and A. Aspect, Phys. Rev. Lett. 97, 200402 (2006) PRLTAO 0031-9007 10.1103/PhysRevLett.97.200402.
A. Couvert, M. Jeppesen, T. Kawalec, G. Reinaudi, R. Mathevet, and D. Guéry-Odelin, Europhys. Lett. 83, 50001 (2008). EULEEJ 0295-5075 10.1209/0295-5075/83/50001
G. L. Gattobigio, A. Couvert, M. Jeppesen, R. Mathevet, and D. Guéry-Odelin, Phys. Rev. A 80, 041605 (R) (2009) PLRAAN 1050-2947 10.1103/PhysRevA.80.041605.
G. L. Gattobigio, A. Couvert, B. Georgeot, and D. Guéry-Odelin, Phys. Rev. Lett. 107, 254104 (2011) PRLTAO 0031-9007 10.1103/PhysRevLett.107.254104.
F. Vermersch, C. M. Fabre, P. Cheiney, G. L. Gattobigio, R. Mathevet, and D. Guéry-Odelin, Phys. Rev. A 84, 043618 (2011) PLRAAN 1050-2947 10.1103/PhysRevA.84.043618.
V. Bolpasi, N. K. Efremidis, M. J. Morrissey, P. C. Condylis, D. Sahagun, M. Baker, and W. von Klitzing, New J. Phys. 16, 033036 (2014) NJOPFM 1367-2630 10.1088/1367-2630/16/3/033036.
J. E. Lye, L. Fallani, M. Modugno, D. S. Wiersma, C. Fort, and M. Inguscio, Phys. Rev. Lett. 95, 070401 (2005) PRLTAO 0031-9007 10.1103/PhysRevLett.95.070401.
T. Ernst, T. Paul, and P. Schlagheck, Phys. Rev. A 81, 013631 (2010) PLRAAN 1050-2947 10.1103/PhysRevA.81.013631.
T. Hartmann, Transport of Bose-Einstein condensates through two dimensional cavities, Ph.D. thesis, Universität Regensburg, 2014.
J.-F. Riou, Y. Le Coq, F. Impens, W. Guerin, C. J. Bordé, A. Aspect, and P. Bouyer, Phys. Rev. A 77, 033630 (2008) PLRAAN 1050-2947 10.1103/PhysRevA.77.033630.
J. Dujardin, A. Saenz, and P. Schlagheck, Appl. Phys. B 117, 765 (2014) APBOEM 0946-2171 10.1007/s00340-014-5804-3.
T. Paul, M. Albert, P. Schlagheck, P. Leboeuf, and N. Pavloff, Phys. Rev. A 80, 033615 (2009) PLRAAN 1050-2947 10.1103/PhysRevA.80.033615.
E. Balslev and J. Combes, Commun. Math. Phys. 22, 280 (1971) CMPHAY 0010-3616 10.1007/BF01877511.
S. Barry, Ann. Math. 97, 247 (1973) ANMAAH 0003-486X 10.2307/1970847.
S. Barry, Phys. Lett. A 71, 211 (1979) PYLAAG 0375-9601 10.1016/0375-9601(79)90165-8.
N. Rom, E. Engdahl, and N. Moiseyev, J. Chem. Phys. 93, 3413 (1990) JCPSA6 0021-9606 10.1063/1.458821.
N. Moiseyev, Phys. Rep. 302, 212 (1998) PRPLCM 0370-1573 10.1016/S0370-1573(98)00002-7.
N. Moiseyev and L. S. Cederbaum, Phys. Rev. A 72, 033605 (2005) PLRAAN 1050-2947 10.1103/PhysRevA.72.033605.
M. Rontani, G. Eriksson, S. Åberg, and S. M. Reimann, J. Phys. B: At., Mol. Opt. Phys. 50, 065301 (2017) JPAPEH 0953-4075 10.1088/1361-6455/aa606a.
P. Leboeuf and N. Pavloff, Phys. Rev. A 64, 033602 (2001) PLRAAN 1050-2947 10.1103/PhysRevA.64.033602.
I. Carusotto, Phys. Rev. A 63, 023610 (2001) PLRAAN 1050-2947 10.1103/PhysRevA.63.023610.
T. Paul, K. Richter, and P. Schlagheck, Phys. Rev. Lett. 94, 020404 (2005) PRLTAO 0031-9007 10.1103/PhysRevLett.94.020404.
T. Paul, P. Leboeuf, N. Pavloff, K. Richter, and P. Schlagheck, Phys. Rev. A 72, 063621 (2005) PLRAAN 1050-2947 10.1103/PhysRevA.72.063621.
T. Paul, M. Hartung, K. Richter, and P. Schlagheck, Phys. Rev. A 76, 063605 (2007) PLRAAN 1050-2947 10.1103/PhysRevA.76.063605.
This implies in practice that one would consider a large population of reservoir atoms (say, (Equation presented)) and a small outcoupling amplitude (say, (Equation presented) in the natural units that we consider here) in such a way that the two compensate each other, giving rise to a finite product (Equation presented).
T. Geiger, T. Wellens, and A. Buchleitner, Phys. Rev. Lett. 109, 030601 (2012) PRLTAO 0031-9007 10.1103/PhysRevLett.109.030601.
M. Johansson, G. Kopidakis, S. Lepri, and S. Aubry, Europhys. Lett. 86, 10009 (2009) EULEEJ 0295-5075 10.1209/0295-5075/86/10009.
S. E. Skipetrov and R. Maynard, Phys. Rev. Lett. 85, 736 (2000) PRLTAO 0031-9007 10.1103/PhysRevLett.85.736.
E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University, Cambridge, England, 2007).
I. Freund, M. Rosenbluh, R. Berkovits, and M. Kaveh, Phys. Rev. Lett. 61, 1214 (1988) PRLTAO 0031-9007 10.1103/PhysRevLett.61.1214.
R. C. Kuhn, O. Sigwarth, C. Miniatura, D. Delande, and C. A. Müller, New J. Phys. 9, 161 (2007) NJOPFM 1367-2630 10.1088/1367-2630/9/6/161.
S. E. Skipetrov, A. Minguzzi, B. A. van Tiggelen, and B. Shapiro, Phys. Rev. Lett. 100, 165301 (2008) PRLTAO 0031-9007 10.1103/PhysRevLett.100.165301.
R. E. Wengert, Commun. ACM 7, 463 (1964) CACMA2 0001-0782 10.1145/355586.364791.
D. Barton, I. M. Willers, and R. V. M. Zahar, in Mathematical Software, edited by J. Rice (Academic, New York, 1971), pp. 369-390.
M. Bartholomew-Biggs, S. Brown, B. Christianson, and L. Dixon, J. Comput. Appl. Math. 124, 171 (2000) JCAMDI 0377-0427 10.1016/S0377-0427(00)00422-2
Numerical Analysis 2000, Vol. IV: Optimization and Nonlinear Equations.
M. Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris, Automatic Differentiation: Applications, Theory, and Implementations, Lecture Notes in Computational Science and Engineering (Springer-Verlag, Berlin, 2006).
U. Naumann, The Art of Differentiating Computer Programs: An Introduction to Algorithmic Differentiation (Society for Industrial and Applied Mathematics, Philadelphia, 2012).
D. S. Petrov, M. Holzmann, and G. V. Shlyapnikov, Phys. Rev. Lett. 84, 2551 (2000) PRLTAO 0031-9007 10.1103/PhysRevLett.84.2551.
D. S. Petrov and G. V. Shlyapnikov, Phys. Rev. A 64, 012706 (2001) PLRAAN 1050-2947 10.1103/PhysRevA.64.012706.
Strictly speaking, this property is not satisfied in the numerical simulations, the results of which are presented in this article, where for the sake of numerical efficiency we chose (Equation presented), which would correspond to (Equation presented). Numerical convergence checks were performed through comparisons with some test calculations that were carried out for (slightly) lower values of (Equation presented).
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.