Article (Scientific journals)
A Probabilistic Forecast-Driven Strategy for a Risk-Aware Participation in the Capacity Firming Market
Dumas, Jonathan; Cointe, Colin; Wehenkel, Antoine et al.
2021In IEEE Transactions on Sustainable Energy
Peer Reviewed verified by ORBi
 

Files


Full Text
IEEE_TSE_final_version_updated.pdf
Author postprint (552.9 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
deep learning; normalizing flows; capacity firming; electricity market; robust optimization; renewable generation uncertainty
Abstract :
[en] This paper addresses the energy management of a grid-connected renewable generation plant coupled with a battery energy storage device in the capacity firming market, designed to promote renewable power generation facilities in small non- interconnected grids, such as Overseas France islands. A recently developed new deep learning model named normalizing flows is used to generate quantile forecasts of renewable generation. Normalizing flows are an increasingly active and promising area of machine learning research. They provide a general mechanism for defining expressive probability distributions, only requiring the specification of a base distribution and a series of bijective transformations. Then, a probabilistic forecast-driven strategy is designed, modeled as a min-max-min robust optimization problem with recourse, and solved using a Benders decomposition. The convergence is improved by building an initial set of cuts derived from domain knowledge. Robust optimization models the generation randomness using an uncertainty set which includes the worst-case generation scenario, and protects this scenario under the minimal increment of costs. This approach improves the results over a deterministic approach with nominal point forecasts by finding a trade-off between conservative and risk-seeking policies. Finally, a dynamic risk-averse parameters selection strategy based on the quantile forecasts distribution provides an additional gain. The case study uses the photovoltaic generation monitored on site at the University of Liège (ULiège), Belgium.
Disciplines :
Electrical & electronics engineering
Energy
Author, co-author :
Dumas, Jonathan  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart-Microgrids
Cointe, Colin;  Mines Paristech
Wehenkel, Antoine  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
Sutera, Antonio ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Méthodes stochastiques
Fettweis, Xavier  ;  Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Cornélusse, Bertrand  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart-Microgrids
Language :
English
Title :
A Probabilistic Forecast-Driven Strategy for a Risk-Aware Participation in the Capacity Firming Market
Publication date :
October 2021
Journal title :
IEEE Transactions on Sustainable Energy
ISSN :
1949-3029
eISSN :
1949-3037
Publisher :
Institute of Electrical and Electronics Engineers, United States - New York
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 18 March 2021

Statistics


Number of views
167 (37 by ULiège)
Number of downloads
114 (25 by ULiège)

Scopus citations®
 
11
Scopus citations®
without self-citations
9
OpenCitations
 
3
OpenAlex citations
 
14

Bibliography


Similar publications



Contact ORBi