[en] The mucosal immune system represents the first line of defense against Brucella infection in nature. We used genetically deficient mice to identify the lymphocytes and signaling pathways implicated in the control of primary and secondary intranasal infection with B. melitensis Our analysis of primary infection demonstrated that the effectors implicated differ at the early and late stages and are dependent on the organ. TCR-δ, TAP1, and IL-17RA deficiency specifically affects early control of Brucella in the lungs, whereas MHC class II (MHCII) and IFN-γR deficiency impairs late control in the lungs, spleen, and liver. Interestingly, IL-12p35(-/-) mice display enhanced Brucella growth in the spleen but not in the lungs or liver. Secondary intranasal infections are efficiently contained in the lung. In contrast to an i.p. infectious model, in which IL-12p35, MHCII, and B cells are strictly required for the control of secondary infection, we observed that only TCR-β deficiency or simultaneous neutralization of IL-12p35- and IL-17A-dependent pathways impairs the memory protective response against a secondary intranasal infection. Protection is not affected by TCR-δ, MHCII, TAP1, B cell, IL-17RA, or IL-12p35 deficiency, suggesting that CD4(+) and CD8(+) α/β(+) T cells are sufficient to mount a protective immune response and that an IL-17A-mediated response can compensate for the partial deficiency of an IFN-γ-mediated response to control a Brucella challenge. These findings demonstrate that the nature of the protective memory response depends closely on the route of infection and highlights the role of IFN-γ-and IL-17RA-mediated responses in the control of mucosal infection by Brucella.
Disciplines :
Microbiology
Author, co-author :
Hanot Mambres, Delphine
Machelart, Arnaud
Potemberg, Georges ; Centre Hospitalier Universitaire de Liège - CHU > Département de Physique Médicale > STA Assurance qualité
De Trez, Carl
Ryffel, Bernhard
Letesson, Jean-Jacques
Muraille, Eric
Language :
English
Title :
Identification of Immune Effectors Essential to the Control of Primary and Secondary Intranasal Infection with Brucella melitensis in Mice.
Godfroid, J., Cloeckaert, A., Liautard, J.P., Kohler, S., Fretin, D., Walravens, K., Garin-Bastuji, B., Letesson, J.J., From the discovery of the Malta fever's agent to the discovery of a marine mammal reservoir, brucellosis has continuously been a re-emerging zoonosis (2005) Vet. Res., 36, pp. 313-326
Martirosyan, A., Gorvel, J.-P., Brucella evasion of adaptive immunity (2013) Future Microbiol., 8, pp. 147-154
Colmenero, J.D., Reguera, J.M., Martos, F., Sánchez-De-Mora, D., Delgado, M., Causse, M., Martń-Farfán, A., Juárez, C., Complications associated with Brucella melitensis infection: A study of 530 cases (1996) Medicine (Baltimore), 75, pp. 195-211. , Published erratum appears in Medicine (Baltimore) 76: 139
Pappas, G., Papadimitriou, P., Akritidis, N., Christou, L., Tsianos, E.V., The new global map of human brucellosis (2006) Lancet Infect. Dis., 6, pp. 91-99
Seleem, M.N., Boyle, S.M., Sriranganathan, N., Brucellosis: A reemerging zoonosis (2010) Vet. Microbiol., 140, pp. 392-398
Pappas, G., Panagopoulou, P., Christou, L., Akritidis, N., Brucella as a biological weapon (2006) Cell. Mol. Life Sci., 63, pp. 2229-2236
Zheludkov, M.M., Tsirelson, L.E., Reservoirs of Brucella infection in nature (2010) Biol. Bull., 37, pp. 709-715
Grégoire, F., Mousset, B., Hanrez, D., Michaux, C., Walravens, K., Linden, A., A serological and bacteriological survey of brucellosis in wild boar (Sus scrofa) in Belgium (2012) BMC Vet. Res., 8, p. 80
Solera, J., Martńez-Alfaro, E., Espinosa, A., Castillejos, M.L., Geijo, P., Rodŕguez-Zapata, M., Multivariate model for predicting relapse in human brucellosis (1998) J. Infect., 36, pp. 85-92
Ficht, T.A., Kahl-McDonagh, M.M., Arenas-Gamboa, A.M., Rice-Ficht, A.C., Brucellosis: The case for live, attenuated vaccines (2009) Vaccine, 27, pp. D40-D43
Oliveira, S.C., Giambartolomei, G.H., Cassataro, J., Confronting the barriers to develop novel vaccines against brucellosis (2011) Expert Rev. Vaccines, 10, pp. 1291-1305
MacEdo, G.C., Magnani, D.M., Carvalho, N.B., Bruna-Romero, O., Gazzinelli, R.T., Oliveira, S.C., Central role of MyD88-dependent dendritic cell maturation and proinflammatory cytokine production to control Brucella abortus infection (2008) J. Immunol., 180, pp. 1080-1087
Weiss, D.S., Takeda, K., Akira, S., Zychlinsky, A., Moreno, E., MyD88, but not toll-like receptors 4 and 2, is required for efficient clearance of Brucella abortus (2005) Infect. Immun., 73, pp. 5137-5143
Copin, R., De Baetselier, P., Carlier, Y., Letesson, J.-J., Muraille, E., MyD88-dependent activation of B220-CD11b+LY-6C+ dendritic cells during Brucella melitensis infection (2007) J. Immunol., 178, pp. 5182-5191
Zhan, Y., Cheers, C., Endogenous gamma interferon mediates resistance to Brucella abortus infection (1993) Infect. Immun., 61, pp. 4899-4901
Vitry, M.-A., De Trez, C., Goriely, S., Dumoutier, L., Akira, S., Ryffel, B., Carlier, Y., Muraille, E., Crucial role of gamma interferon-producing CD4+ Th1 cells but dispensable function of CD8+ T cell, B cell, Th2, and Th17 responses in the control of Brucella melitensis infection in mice (2012) Infect. Immun., 80, pp. 4271-4280
Vitry, M.-A., Hanot Mambres, D., De Trez, C., Akira, S., Ryffel, B., Letesson, J.-J., Muraille, E., Humoral immunity and CD4+ Th1 cells are both necessary for a fully protective immune response upon secondary infection with Brucella melitensis (2014) J. Immunol., 192, pp. 3740-3752
Kaufmann, A.F., Fox, M.D., Boyce, J.M., Anderson, D.C., Potter, M.E., Martone, W.J., Patton, C.M., Airborne spread of brucellosis (1980) Ann. N. Y. Acad. Sci., 353, pp. 105-114
Bossi, P., Tegnell, A., Baka, A., Van Loock, F., Hendriks, J., Werner, A., Maidhof, H., Gouvras, G., Bichat guidelines for the clinical management of brucellosis and bioterrorism-related brucellosis (2004) Euro Surveill., 9, pp. E15-E16
Henning, L.N., Gillum, K.T., Fisher, D.A., Barnewall, R.E., Krile, R.T., Anderson, M.S., Ryan, M.J., Warren, R.L., The pathophysiology of inhalational brucellosis in BALB/c mice (2012) Sci. Rep., 2, p. 495
Mense, M.G., Borschel, R.H., Wilhelmsen, C.L., Pitt, M.L., Hoover, D.L., Pathologic changes associated with brucellosis experimentally induced by aerosol exposure in rhesus macaques (Macaca mulatta) (2004) Am. J. Vet. Res., 65, pp. 644-652
Pei, J., Ding, X., Fan, Y., Rice-Ficht, A., Ficht, T.A., Toll-like receptors are critical for clearance of Brucella and play different roles in development of adaptive immunity following aerosol challenge in mice (2012) Front. Cell. Infect. Microbiol., 2, p. 115
Huang, S., Hendriks, W., Althage, A., Hemmi, S., Bluethmann, H., Kamijo, R., Vilcek, J., Aguet, M., Immune response in mice that lack the interferon-gamma receptor (1993) Science, 259, pp. 1742-1745
Carrera, L., Gazzinelli, R.T., Badolato, R., Hieny, S., Muller, W., Kuhn, R., Sacks, D.L., Leishmania promastigotes selectively inhibit interleukin 12 induction in bone marrow-derived macrophages from susceptible and resistant mice (1996) J. Exp. Med., 183, pp. 515-526
Magram, J., Connaughton, S.E., Warrier, R.R., Carvajal, D.M., Wu, C.Y., Ferrante, J., Stewart, C., Gately, M.K., IL-12-deficient mice are defective in IFN g production and type 1 cytokine responses (1996) Immunity, 4, pp. 471-481
Nakae, S., Komiyama, Y., Nambu, A., Sudo, K., Iwase, M., Homma, I., Sekikawa, K., Iwakura, Y., Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses (2002) Immunity, 17, pp. 375-387
Ghilardi, N., Kljavin, N., Chen, Q., Lucas, S., Gurney, A.L., De Sauvage, F.J., Compromised humoral and delayed-type hypersensitivity responses in IL-23-deficient mice (2004) J. Immunol., 172, pp. 2827-2833
Van Kaer, L., Ashton-Rickardt, P.G., Ploegh, H.L., Tonegawa, S., TAP1 mutant mice are deficient in antigen presentation, surface class i molecules, and CD4-8+ T cells (1992) Cell, 71, pp. 1205-1214
Cosgrove, D., Gray, D., Dierich, A., Kaufman, J., Lemeur, M., Benoist, C., Mathis, D., Mice lacking MHC class II molecules (1991) Cell, 66, pp. 1051-1066
Mombaerts, P., Iacomini, J., Johnson, R.S., Herrup, K., Tonegawa, S., Papaioannou, V.E., RAG-1-deficient mice have no mature B and T lymphocytes (1992) Cell, 68, pp. 869-877
Muramatsu, M., Kinoshita, K., Fagarasan, S., Yamada, S., Shinkai, Y., Honjo, T., Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme (2000) Cell, 102, pp. 553-563
Marino, M.W., Dunn, A., Grail, D., Inglese, M., Noguchi, Y., Richards, E., Jungbluth, A., Williamson, B., Characterization of tumor necrosis factor-deficient mice (1997) Proc. Natl. Acad. Sci. USA, 94, pp. 8093-8098
Poli, V., Balena, R., Fattori, E., Markatos, A., Yamamoto, M., Tanaka, H., Ciliberto, G., Costantini, F., Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion (1994) EMBO J., 13, pp. 1189-1196
Shaner, N.C., Campbell, R.E., Steinbach, P.A., Giepmans, B.N.G., Palmer, A.E., Tsien, R.Y., Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp red fluorescent protein (2004) Nat. Biotechnol., 22, pp. 1567-1572
Copin, R., Vitry, M.-A., Hanot Mambres, D., MacHelart, A., De Trez, C., Vanderwinden, J.-M., Magez, S., Carlier, Y., In situ microscopy analysis reveals local innate immune response developed around Brucella infected cells in resistant and susceptible mice (2012) PLoS Pathog., 8, p. e1002575
Izadjoo, M.J., Polotsky, Y., Mense, M.G., Bhattacharjee, A.K., Paranavitana, C.M., Hadfield, T.L., Hoover, D.L., Impaired control of Brucella melitensis infection in Rag1-deficient mice (2000) Infect. Immun., 68, pp. 5314-5320
Mense, M.G., Van De Verg, L.L., Bhattacharjee, A.K., Garrett, J.L., Hart, J.A., Lindler, L.E., Hadfield, T.L., Hoover, D.L., Bacteriologic and histologic features in mice after intranasal inoculation of Brucella melitensis (2001) Am. J. Vet. Res., 62, pp. 398-405
Vitry, M.-A., Hanot Mambres, D., Deghelt, M., Hack, K., MacHelart, A., Lhomme, F., Vanderwinden, J.-M., Pérez-Morga, D., Brucella melitensis invades murine erythrocytes during infection (2014) Infect. Immun., 82, pp. 3927-3938
Archambaud, C., Salcedo, S.P., Lelouard, H., Devilard, E., De Bovis, B., Van Rooijen, N., Gorvel, J.P., Malissen, B., Contrasting roles of macrophages and dendritic cells in controlling initial pulmonary Brucella infection (2010) Eur. J. Immunol., 40, pp. 3458-3471
Kurihara, T., Warr, G., Loy, J., Bravo, R., Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor (1997) J. Exp. Med., 186, pp. 1757-1762
Murphy, E.A., Sathiyaseelan, J., Parent, M.A., Zou, B., Baldwin, C.L., Interferon-gamma is crucial for surviving a Brucella abortus infection in both resistant C57BL/6 and susceptible BALB/c mice (2001) Immunology, 103, pp. 511-518
Ko, J., Gendron-Fitzpatrick, A., Splitter, G.A., Susceptibility of IFN regulatory factor-1 and IFN consensus sequence binding protein-deficient mice to brucellosis (2002) J. Immunol., 168, pp. 2433-2440
Brandão, A.P., Oliveira, F.S., Carvalho, N.B., Vieira, L.Q., Azevedo, V., MacEdo, G.C., Oliveira, S.C., Host susceptibility to Brucella abortus infection is more pronounced in IFN-γ Knockout than IL-12/b2-microglobulin double-deficient mice (2012) Clin. Dev. Immunol., 2012, p. 589494
Nugent, R., Chronic diseases in developing countries: Health and economic burdens (2008) Ann. N. Y. Acad. Sci., 1136, pp. 70-79
Belyakov, I.M., Ahlers, J.D., What role does the route of immunization play in the generation of protective immunity against mucosal pathogens? (2009) J. Immunol., 183, pp. 6883-6892
Martirosyan, A., Moreno, E., Gorvel, J.P., An evolutionary strategy for a stealthy intracellular Brucella pathogen (2011) Immunol. Rev., 240, pp. 211-234
Fabrik, I., Härtlova, A., Rehulka, P., Stulik, J., Serving the new masters-dendritic cells as hosts for stealth intracellular bacteria (2013) Cell. Microbiol., 15, pp. 1473-1483
Kahl-McDonagh, M.M., Arenas-Gamboa, A.M., Ficht, T.A., Aerosol infection of BALB/c mice with Brucella melitensis and Brucella abortus and protective efficacy against aerosol challenge (2007) Infect. Immun., 75, pp. 4923-4932
Bhattacharjee, A.K., Van De Verg, L., Izadjoo, M.J., Yuan, L., Hadfield, T.L., Zollinger, W.D., Hoover, D.L., Protection of mice against brucellosis by intranasal immunization with Brucella melitensis lipopolysaccharide as a noncovalent complex with Neisseria meningitidis group B outer membrane protein (2002) Infect. Immun., 70, pp. 3324-3329
Verdrengh, M., Thomas, J.A., Hultgren, O.H., IL-1 receptor-associated kinase 1 mediates protection against Staphylococcus aureus infection (2004) Microbes Infect., 6, pp. 1268-1272
Reiniger, N., Lee, M.M., Coleman, F.T., Ray, C., Golan, D.E., Pier, G.B., Resistance to Pseudomonas aeruginosa chronic lung infection requires cystic fibrosis transmembrane conductance regulator-modulated interleukin-1 (IL-1) release and signaling through the IL-1 receptor (2007) Infect. Immun., 75, pp. 1598-1608
Dalrymple, S.A., Lucian, L.A., Slattery, R., McNeil, T., Aud, D.M., Fuchino, S., Lee, F., Murray, R., Interleukin-6-deficient mice are highly susceptible to Listeria monocytogenes infection: Correlation with inefficient neutrophilia (1995) Infect. Immun., 63, pp. 2262-2268
Dalrymple, S.A., Slattery, R., Aud, D.M., Krishna, M., Lucian, L.A., Murray, R., Interleukin-6 is required for a protective immune response to systemic Escherichia coli infection (1996) Infect. Immun., 64, pp. 3231-3235
Jebbari, H., Roberts, C.W., Ferguson, D.J., Bluethmann, H., Alexander, J., A protective role for IL-6 during early infection with Toxoplasma gondii (1998) Parasite Immunol., 20, pp. 231-239
Allie, N., Grivennikov, S.I., Keeton, R., Hsu, N.-J., Bourigault, M.-L., Court, N., Fremond, C., Ryffel, B., Prominent role for T cell-derived tumour necrosis factor for sustained control of Mycobacterium tuberculosis infection (2013) Sci. Rep., 3, p. 1809
Virna, S., Deckert, M., Lutjen, S., Soltek, S., Foulds, K.E., Shen, H., Körner, H., Schluter, D., TNF is important for pathogen control and limits brain damage in murine cerebral listeriosis (2006) J. Immunol., 177, pp. 3972-3982
Fujita, M., Ikegame, S., Harada, E., Ouchi, H., Inoshima, I., Watanabe, K., Yoshida, S., Nakanishi, Y., TNF receptor 1 and 2 contribute in different ways to resistance to Legionella pneumophila-induced mortality in mice (2008) Cytokine, 44, pp. 298-303
Ferrero, M.C., Hielpos, M.S., Carvalho, N.B., Barrionuevo, P., Corsetti, P.P., Giambartolomei, G.H., Oliveira, S.C., Baldi, P.C., Key role of Tolllike receptor 2 in the inflammatory response and major histocompatibility complex class II downregulation in Brucella abortus-infected alveolar macrophages (2014) Infect. Immun., 82, pp. 626-639
Pietras, E.M., Miller, L.S., Johnson, C.T., O'Connell, R.M., Dempsey, P.W., Cheng, G., A MyD88-dependent IFNgR-CCR2 signaling circuit is required for mobilization of monocytes and host defense against systemic bacterial challenge (2011) Cell Res., 21, pp. 1068-1079
De Trez, C., Magez, S., Akira, S., Ryffel, B., Carlier, Y., Muraille, E., INOS-producing inflammatory dendritic cells constitute the major infected cell type during the chronic Leishmania major infection phase of C57BL/6 resistant mice (2009) PLoS Pathog., 5, p. e1000494
Iwakura, Y., Ishigame, H., Saijo, S., Nakae, S., Functional specialization of interleukin-17 family members (2011) Immunity, 34, pp. 149-162
Curtis, M.M., Way, S.S., Interleukin-17 in host defence against bacterial, mycobacterial and fungal pathogens (2009) Immunology, 126, pp. 177-185
Tsai, H.C., Velichko, S., Hung, L.Y., Wu, R., IL-17A and Th17 cells in lung inflammation: An update on the role of Th17 cell differentiation and IL-17R signaling in host defense against infection (2013) Clin. Dev. Immunol., 2013, p. 267971
Duhen, R., Glatigny, S., Arbelaez, C.A., Blair, T.C., Oukka, M., Bettelli, E., Cutting edge: The pathogenicity of IFN-γ-producing Th17 cells is independent of T-bet (2013) J. Immunol., 190, pp. 4478-4482
Skyberg, J.A., Thornburg, T., Rollins, M., Huarte, E., Jutila, M.A., Pascual, D.W., Murine and bovine gd T cells enhance innate immunity against Brucella abortus infections (2011) PLoS One, 6, p. e21978
Wozniak, K.L., Kolls, J.K., Wormley, F.L., Jr., Depletion of neutrophils in a protective model of pulmonary cryptococcosis results in increased IL-17A production by gd T cells (2012) BMC Immunol., 13, p. 65
Dejima, T., Shibata, K., Yamada, H., Hara, H., Iwakura, Y., Naito, S., Yoshikai, Y., Protective role of naturally occurring interleukin-17Aproducing gd T cells in the lung at the early stage of systemic candidiasis in mice (2011) Infect. Immun., 79, pp. 4503-4510
Cheng, P., Liu, T., Zhou, W.-Y., Zhuang, Y., Peng, L.S., Zhang, J.Y., Yin, Z.N., Zou, Q.M., Role of gamma-delta T cells in host response against Staphylococcus aureus-induced pneumonia (2012) BMC Immunol, 13, p. 38
Skyberg, J.A., Thornburg, T., Kochetkova, I., Layton, W., Callis, G., Rollins, M.F., Riccardi, C., Pascual, D.W., IFN-γ-deficient mice develop IL-1-dependent cutaneous and musculoskeletal inflammation during experimental brucellosis (2012) J. Leukoc. Biol., 92, pp. 375-387
MacNamara, K.C., Oduro, K., Martin, O., Jones, D.D., McLaughlin, M., Choi, K., Borjesson, D.L., Winslow, G.M., Infection-induced myelopoiesis during intracellular bacterial infection is critically dependent upon IFN-γ Signaling (2011) J. Immunol., 186, pp. 1032-1043
Barquero-Calvo, E., Martirosyan, A., Ordoñez-Rueda, D., Arce-Gorvel, V., Alfaro-Alarcón, A., Lepidi, H., Malissen, B., Moreno, E., Neutrophils exert a suppressive effect on Th1 responses to intracellular pathogen Brucella abortus (2013) PLoS Pathog., 9, p. e1003167
Cheng, O.Z., Palaniyar, N., NET balancing: A problem in inflammatory lung diseases (2013) Front. Immunol., 4, p. 1
Durward, M., Radhakrishnan, G., Harms, J., Bareiss, C., Magnani, D., Splitter, G.A., Active evasion of CTL mediated killing and low quality responding CD8+ T cells contribute to persistence of brucellosis (2012) PLoS One, 7, p. e34925
Durward-Diioia, M., Harms, J., Khan, M., Hall, C., Smith, J.A., Splitter, G.A., CD8+ T cell exhaustion, suppressed gamma interferon production, and delayed memory response induced by chronic Brucella melitensis infection (2015) Infect. Immun., 83, pp. 4759-4771
Clapp, B., Skyberg, J.A., Yang, X., Thornburg, T., Walters, N., Pascual, D.W., Protective live oral brucellosis vaccines stimulate Th1 and th17 cell responses (2011) Infect. Immun., 79, pp. 4165-4174