Tully, J. C. Perspective: Nonadiabatic dynamics theory. J. Chem. Phys. 2012, 137, 22A301, 10.1063/1.4757762
Yarkony, D. Nonadiabatic Quantum Chemistry: Past, Present, and Future. Chem. Rev. 2012, 112, 481, 10.1021/cr2001299
Domcke, W., Yarkony, D., Köppel, H., Eds. Conical Intersections: Theory, Computation and Experiment; World Scientific Publishing Co. Inc., 2012; Vol. 17.
Tannor, D. J. Introduction to quantum mechanics, a time-dependent perspective; University Science Books: Sausalito, CA, 2007.
Persico, M.; Granucci, G. Photochemistry: A Modern Theoretical Perspective; Springer, 2018.
Suchan, J.; Hollas, D.; Curchod, B. F. E.; Slavicek, P. On the Importance of Initial Conditions for Excited-State Dynamics. Faraday Discuss. 2018, 212, 307-330, 10.1039/C8FD00088C
Beck, M. H.; Jäckle, A.; Worth, G. A.; Meyer, H. D. The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 2000, 324, 1-105, 10.1016/S0370-1573(99)00047-2
Worth, G. A.; Meyer, H. D.; Cederbaum, L. S. In Conical Intersections: Electronic Structure, Dynamics & Spectroscopy; Domcke, W., Yarkony, D. R., Köppel, H., Eds.; Advanced Series in Physical Chemistry; World Scientific, 2004; Vol. 15. Chapter 14, pp 583-617.
Meyer, H.-D.; Gatti, F.; Worth, G. A. Multidimensional quantum dynamics; John Wiley & Sons, 2009.
Curchod, B. F. E.; Martínez, T. J. Ab initio nonadiabatic quantum molecular dynamics. Chem. Rev. 2018, 118, 3305-3336, 10.1021/acs.chemrev.7b00423
Worth, G.; Robb, M.; Burghardt, I. A novel algorithm for non-adiabatic direct dynamics using variational Gaussian wavepackets. Faraday Discuss. 2004, 127, 307-323, 10.1039/b314253a
Lasorne, B.; Bearpark, M. J.; Robb, M. A.; Worth, G. A. Direct quantum dynamics using variational multi-configuration Gaussian wavepackets. Chem. Phys. Lett. 2006, 432, 604-609, 10.1016/j.cplett.2006.10.099
Lasorne, B.; Robb, M.; Worth, G. Direct quantum dynamics using variational multi-configuration Gaussian wavepackets. Implementation details and test case. Phys. Chem. Chem. Phys. 2007, 9, 3210-3227, 10.1039/b700297a
Worth, G. A.; Robb, M. A.; Lasorne, B. Solving the time-dependent Schrödinger equation for nuclear motion in one step: direct dynamics of non-adiabatic systems. Mol. Phys. 2008, 106, 2077-2091, 10.1080/00268970802172503
Mendive-Tapia, D.; Lasorne, B.; Worth, G. A.; Robb, M. A.; Bearpark, M. J. Towards converging non-adiabatic direct dynamics calculations using frozen-width variational Gaussian product basis functions. J. Chem. Phys. 2012, 137, 22A548, 10.1063/1.4765087
Richings, G.; Polyak, I.; Spinlove, K.; Worth, G.; Burghardt, I.; Lasorne, B. Quantum dynamics simulations using Gaussian wavepackets: the vMCG method. Int. Rev. Phys. Chem. 2015, 34, 269-308, 10.1080/0144235X.2015.1051354
Shalashilin, D. Quantum mechanics with the basis set guided by Ehrenfest trajectories: Theory and application to spin-boson model. J. Chem. Phys. 2009, 130, 244101, 10.1063/1.3153302
Shalashilin, D. V. Nonadiabatic dynamics with the help of multiconfigurational Ehrenfest method: Improved theory and fully quantum 24D simulation of pyrazine. J. Chem. Phys. 2010, 132, 244111, 10.1063/1.3442747
Saita, K.; Shalashilin, D. V. On-the-fly ab initio molecular dynamics with multiconfigurational Ehrenfest method. J. Chem. Phys. 2012, 137, 22A506, 10.1063/1.4734313
Makhov, D.; Symonds, C.; Fernandez-Alberti, S.; Shalashilin, D. Ab initio quantum direct dynamics simulations of ultrafast photochemistry with Multiconfigurational Ehrenfest approach. Chem. Phys. 2017, 493, 200-218, 10.1016/j.chemphys.2017.04.003
Martínez, T. J.; Ben-Nun, M.; Levine, R. D. Multi-electronic-state molecular dynamics: A wave function approach with applications. J. Phys. Chem. 1996, 100, 7884-7895, 10.1021/jp953105a
Martínez, T. J.; Levine, R. D. Non-adiabatic molecular dynamics: Split-operator multiple spawning with applications to photodissociation. J. Chem. Soc., Faraday Trans. 1997, 93, 941-947, 10.1039/a605958i
Ben-Nun, M.; Martínez, T. J. Nonadiabatic molecular dynamics: Validation of the multiple spawning method for a multidimensional problem. J. Chem. Phys. 1998, 108, 7244-7257, 10.1063/1.476142
Ben-Nun, M.; Quenneville, J.; Martínez, T. J. Ab initio multiple spawning: Photochemistry from first principles quantum molecular dynamics. J. Phys. Chem. A 2000, 104, 5161-5175, 10.1021/jp994174i
Hack, M. D.; Wensmann, A. M.; Truhlar, D. G.; Ben-Nun, M.; Martínez, T. J. Comparison of full multiple spawning, trajectory surface hopping, and converged quantum mechanics for electronically nonadiabatic dynamics. J. Chem. Phys. 2001, 115, 1172, 10.1063/1.1377030
Ben-Nun, M.; Martínez, T. J. Ab Initio Quantum Molecular Dynamics. Adv. Chem. Phys. 2002, 121, 439-512, 10.1002/0471264318.ch7
Virshup, A. M.; Punwong, C.; Pogorelov, T. V.; Lindquist, B. A.; Ko, C.; Martinez, T. J. Photodynamics in Complex Environments: Ab Initio Multiple Spawning Quantum Mechanical/Molecular Mechanical Dynamics. J. Phys. Chem. B 2009, 113, 3280-3291, 10.1021/jp8073464
Tully, J. C. Mixed quantum classical dynamics. Faraday Discuss. 1998, 110, 407, 10.1039/a801824c
Crespo-Otero, R.; Barbatti, M. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum-Classical Dynamics. Chem. Rev. 2018, 118, 7026-7068, 10.1021/acs.chemrev.7b00577
Bjerre, A.; Nikitin, E. Energy transfer in collisions of an excited sodium atom with a nitrogen molecule. Chem. Phys. Lett. 1967, 1, 179-181, 10.1016/0009-2614(67)85041-3
Tully, J. C.; Preston, R. K. Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H + with D 2 . J. Chem. Phys. 1971, 55, 562-572, 10.1063/1.1675788
Tully, J. C. Molecular dynamics with electronic transitions. J. Chem. Phys. 1990, 93, 1061-1071, 10.1063/1.459170
Delos, J. B.; Thorson, W. R.; Knudson, S. K. Semiclassical theory of inelastic collisions. I. Classical picture and semiclassical formulation. Phys. Rev. A: At., Mol., Opt. Phys. 1972, 6, 709, 10.1103/PhysRevA.6.709
Yonehara, T.; Hanasaki, K.; Takatsuka, K. Fundamental Approaches to Nonadiabaticity: Toward a Chemical Theory beyond the Born-Oppenheimer Paradigm. Chem. Rev. 2012, 112, 499-542, 10.1021/cr200096s
Min, S. K.; Agostini, F.; Gross, E. K. Coupled-trajectory quantum-classical approach to electronic decoherence in nonadiabatic processes. Phys. Rev. Lett. 2015, 115, 073001, 10.1103/PhysRevLett.115.073001
Agostini, F.; Min, S. K.; Abedi, A.; Gross, E. Quantum-Classical Nonadiabatic Dynamics: Coupled-vs Independent-Trajectory Methods. J. Chem. Theory Comput. 2016, 12, 2127-2143, 10.1021/acs.jctc.5b01180
Min, S. K.; Agostini, F.; Tavernelli, I.; Gross, E. K. Ab initio nonadiabatic dynamics with coupled trajectories: A rigorous approach to quantum (de) coherence. J. Phys. Chem. Lett. 2017, 8, 3048-3055, 10.1021/acs.jpclett.7b01249
Curchod, B. F. E.; Agostini, F.; Tavernelli, I. CT-MQC-a coupled-trajectory mixed quantum/classical method including nonadiabatic quantum coherence effects. Eur. Phys. J. B 2018, 91, 168, 10.1140/epjb/e2018-90149-x
Jones, G. A.; Acocella, A.; Zerbetto, F. On-the-Fly, Electric-Field-Driven, Coupled Electron-Nuclear Dynamics. J. Phys. Chem. A 2008, 112, 9650-9656, 10.1021/jp805360v
Mitrić, R.; Petersen, J.; Bonačić-Koutecký, V. Laser-field-induced surface-hopping method for the simulation and control of ultrafast photodynamics. Phys. Rev. A: At., Mol., Opt. Phys. 2009, 79, 053416, 10.1103/PhysRevA.79.053416
Marquetand, P.; Richter, M.; González-Vázquez, J.; Sola, I.; González, L. Nonadiabatic ab initio molecular dynamics including spin-orbit coupling and laser fields. Faraday Discuss. 2011, 153, 261-273, 10.1039/c1fd00055a
Tavernelli, I.; Curchod, B. F. E.; Rothlisberger, U. Mixed quantum-classical dynamics with time-dependent external fields: A time-dependent density-functional-theory approach. Phys. Rev. A: At., Mol., Opt. Phys. 2010, 81, 052508, 10.1103/PhysRevA.81.052508
Curchod, B. F. E.; Penfold, T. J.; Rothlisberger, U.; Tavernelli, I. Local control theory in trajectory-based nonadiabatic dynamics. Phys. Rev. A: At., Mol., Opt. Phys. 2011, 84, 042507, 10.1103/PhysRevA.84.042507
Bajo, J. J.; Granucci, G.; Persico, M. Interplay of radiative and nonradiative transitions in surface hopping with radiation-molecule interactions. J. Chem. Phys. 2014, 140, 044113, 10.1063/1.4862738
Persico, M.; Granucci, G. An overview of nonadiabatic dynamics simulations methods, with focus on the direct approach versus the fitting of potential energy surfaces. Theor. Chem. Acc. 2014, 133, 1526, 10.1007/s00214-014-1526-1
Curchod, B. F.; Penfold, T. J.; Rothlisberger, U.; Tavernelli, I. Local Control Theory in Trajectory Surface Hopping Dynamics Applied to the Excited-State Proton Transfer of 4-Hydroxyacridine. ChemPhysChem 2015, 16, 2127-2133, 10.1002/cphc.201500190
Yagi, K.; Takatsuka, K. Nonadiabatic chemical dynamics in an intense laser field: electronic wave packet coupled with classical nuclear motions. J. Chem. Phys. 2005, 123, 224103, 10.1063/1.2130335
Kim, J.; Tao, H.; White, J. L.; Petrovic, V. S.; Martinez, T. J.; Bucksbaum, P. H. Control of 1,3-cyclohexadiene photoisomerization using light-induced conical intersections. J. Phys. Chem. A 2012, 116, 2758-2763, 10.1021/jp208384b
Kim, J.; Tao, H.; Martinez, T. J.; Bucksbaum, P. Ab initio multiple spawning on laser-dressed states: a study of 1,3-cyclohexadiene photoisomerization via light-induced conical intersections. J. Phys. B: At., Mol. Opt. Phys. 2015, 48, 164003, 10.1088/0953-4075/48/16/164003
Mignolet, B.; Curchod, B. F. E.; Martínez, T. J. Communication: XFAIMS-eXternal Field Ab Initio Multiple Spawning for electron-nuclear dynamics triggered by short laser pulses. J. Chem. Phys. 2016, 145, 191104, 10.1063/1.4967761
Makhov, D. V.; Shalashilin, D. V. Floque Hamiltonian for incorporating electronic excitation by a laser pulse into simulations of non-adiabatic dynamics. Chem. Phys. 2018, 515, 46-51, 10.1016/j.chemphys.2018.07.048
Mignolet, B.; Curchod, B. F. E.; Remacle, F.; Martínez, T. J. Sub-Femtosecond Stark Control of Molecular Photoexcitation With Near Single-Cycle Pulses. J. Phys. Chem. Lett. 2019, 10, 742, 10.1021/acs.jpclett.8b03814
Mignolet, B.; Curchod, B. F. E. A walk through the approximations of ab initio multiple spawning. J. Chem. Phys. 2018, 148, 134110, 10.1063/1.5022877
Curchod, B. F. E.; Tavernelli, I. On trajectory-based nonadiabatic dynamics: Bohmian dynamics versus trajectory surface hopping. J. Chem. Phys. 2013, 138, 184112, 10.1063/1.4803835
Subotnik, J. E.; Ouyang, W.; Landry, B. R. Can we derive Tully's surface-hopping algorithm from the semiclassical quantum Liouville equation? Almost, but only with decoherence. J. Chem. Phys. 2013, 139, 214107, 10.1063/1.4829856
Barbatti, M. Nonadiabatic dynamics with trajectory surface hopping method. WIREs Comput. Mol. Sci. 2011, 1, 620-633, 10.1002/wcms.64
Jasper, A. W.; Nangia, S.; Zhu, C.; Truhlar, D. G. Non-Born-Oppenheimer Molecular Dynamics. Acc. Chem. Res. 2006, 39, 101, 10.1021/ar040206v
Granucci, G.; Persico, M. Critical appraisal of the fewest switches algorithm for surface hopping. J. Chem. Phys. 2007, 126, 134114, 10.1063/1.2715585
Jaeger, H. M.; Fischer, S.; Prezhdo, O. V. Decoherence-induced surface hopping. J. Chem. Phys. 2012, 137, 22A545, 10.1063/1.4757100
Subotnik, J. E.; Ouyang, W.; Landry, B. R. Can we derive Tully's surface-hopping algorithm from the semiclassical quantum Liouville equation? Almost, but only with decoherence. J. Chem. Phys. 2013, 139, 214107, 10.1063/1.4829856
Bittner, E. R.; Rossky, P. J. Quantum decoherence in mixed quantum-classical systems: Nonadiabatic processes. J. Chem. Phys. 1995, 103, 8130-8143, 10.1063/1.470177
Fang, J.-Y.; Hammes-Schiffer, S. Improvement of the Internal Consistency in Trajectory Surface Hopping. J. Phys. Chem. A 1999, 103, 9399-9407, 10.1021/jp991602b
Shenvi, N.; Subotnik, J. E.; Yang, W. Simultaneous-trajectory surface hopping: A parameter-free algorithm for implementing decoherence in nonadiabatic dynamics. J. Chem. Phys. 2011, 134, 144102, 10.1063/1.3575588
Shenvi, N.; Subotnik, J. E.; Yang, W. Phase-corrected surface hopping: Correcting the phase evolution of the electronic wavefunction. J. Chem. Phys. 2011, 135, 024101, 10.1063/1.3603447
Shenvi, N.; Yang, W. Achieving partial decoherence in surface hopping through phase correction. J. Chem. Phys. 2012, 137, 22A528, 10.1063/1.4746407
Subotnik, J. E.; Shenvi, N. A new approach to decoherence and momentum rescaling in the surface hopping algorithm. J. Chem. Phys. 2011, 134, 024105, 10.1063/1.3506779
Subotnik, J. E.; Shenvi, N. Decoherence and surface hopping: When can averaging over initial conditions help capture the effects of wave packet separation?. J. Chem. Phys. 2011, 134, 244114, 10.1063/1.3603448
Jasper, A. W.; Truhlar, D. G. Electronic decoherence time for non-Born-Oppenheimer trajectories. J. Chem. Phys. 2007, 127, 194306, 10.1063/1.2798763
Thachuk, M.; Ivanov, M. Y.; Wardlaw, D. M. A semiclassical approach to intense-field above-threshold dissociation in the long wavelength limit. J. Chem. Phys. 1996, 105, 4094-4104, 10.1063/1.472281
Richter, M.; Marquetand, P.; González-Vázquez, J.; Sola, I.; González, L. SHARC: ab Initio Molecular Dynamics with Surface Hopping in the Adiabatic Representation Including Arbitrary Couplings. J. Chem. Theory Comput. 2011, 7, 1253-1258, 10.1021/ct1007394
Bajo, J.; González-Vázquez, J.; Sola, I.; Santamaria, J.; Richter, M.; Marquetand, P.; González, L. Mixed Quantum-Classical Dynamics in the Adiabatic Representation to Simulate Molecules Driven by Strong Laser Pulses. J. Phys. Chem. A 2012, 116, 2800, 10.1021/jp208997r
Mai, S.; Marquetand, P.; González, L. Nonadiabatic dynamics: The SHARC approach. WIREs Comput. Mol. Sci. 2018, 8, e1370, 10.1002/wcms.1370
Mai, S.; Richter, M.; Heindl, M.; Menger, M. F. S. J.; Atkins, A. J.; Ruckenbauer, M.; Plasser, F.; Oppel, M.; Marquetand, P.; González, L. SHARC2.0: Surface Hopping Including Arbitrary Couplings-Program Package for Non-Adiabatic Dynamics. sharc-md.org, 2018.
Granucci, G.; Persico, M. Critical appraisal of the fewest switches algorithm for surface hopping. J. Chem. Phys. 2007, 126, 134114-11, 10.1063/1.2715585
Granucci, G.; Persico, M.; Zoccante, A. Including quantum decoherence in surface hopping. J. Chem. Phys. 2010, 133, 134111, 10.1063/1.3489004
Levine, B. G.; Coe, J. D.; Virshup, A. M.; Martinez, T. J. Implementation of ab initio multiple spawning in the Molpro quantum chemistry package. Chem. Phys. 2008, 347, 3-16, 10.1016/j.chemphys.2008.01.014
Nikodem, A.; Levine, R.; Remacle, F. Quantum nuclear dynamics pumped and probed by ultrafast polarization controlled steering of a coherent electronic state in LiH. J. Phys. Chem. A 2016, 120, 3343-3352, 10.1021/acs.jpca.6b00140
Nikodem, A.; Levine, R.; Remacle, F. Spatial and temporal control of populations, branching ratios, and electronic coherences in LiH by a single one-cycle infrared pulse. Phys. Rev. A: At., Mol., Opt. Phys. 2017, 95, 053404, 10.1103/PhysRevA.95.053404