Krizhevsky, A., Sutskever, I., and Hinton, G. E., "ImageNet Classification with Deep Convolutional Neural Networks," in [Advances in Neural Information Processing Systems 25], Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., eds., Curran Associates, Inc. (2012).
Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C., Shpanskaya, K., et al., "CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning," arXiv preprint arXiv:1711.05225 (2017).
Bien, N., Rajpurkar, P., Ball, R. L., Irvin, J., Park, A., Jones, E., Bereket, M., Patel, B. N., Yeom, K. W., Shpanskaya, K., et al., "Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet," PLoS Medicine 15(11), e1002699 (2018).
Han, S., Kim, M., Lim, W., Park, G., Park, I., and Chang, S., "Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm," Journal of Investigative Dermatology 138(7), 1529-1538 (2018).
Nguyen, H.-G., Pica, A., Hrbacek, J., Weber, D. C., La Rosa, F., Schalenbourg, A., Sznitman, R., and Cuadra, M. B., "A novel segmentation framework for uveal melanoma in magnetic resonance imaging based on class activation maps," in [International Conference on Medical Imaging with Deep Learning], 370-379 (2019).
Kiani, A., Uyumazturk, B., Rajpurkar, P., Wang, A., Gao, R., Jones, E., Yu, Y., Langlotz, C. P., Ball, R. L., Montine, T. J., et al., "Impact of a deep learning assistant on the histopathologic classification of liver cancer," npj - Digital Medicine 3(1), 1-8 (2020).
Kim, M., Han, J., Hyun, S., Janssens, O., Van Hoecke, S., Kee, C., and De Neve, W., "Medinoid: Computer-Aided Diagnosis and Localization of Glaucoma Using Deep Learning," Applied Sciences 9(15), 3064 (2019).
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A., "Learning Deep Features for Discriminative Localization," in [2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)], 2921-2929, IEEE (2016).
Waring, J., Lindvall, C., and Umeton, R., "Automated machine learning: Review of the state-of-the-art and opportunities for healthcare," Artificial Intelligence in Medicine (2020).
Anwar, S. M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., and Khan, M. K., "Medical Image Analysis using Convolutional Neural Networks: A Review," Journal of Medical Systems (2018).
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D., "Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization," in [Proceedings of IEEE International Conference on Computer Vision], 618-626 (2017).
Simonyan, K. and Zisserman, A., "Very Deep Convolutional Networks for Large-Scale Image Recognition," arXiv preprint arXiv:1409.1556 (2014).
Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., and Liu, C., "A Survey on Deep Transfer Learning," in [Artificial Neural Networks and Machine Learning -ICANN 2018], 270-279, Springer International Publishing (2018).
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L., "ImageNet: A large-scale hierarchical image database," in [2009 IEEE conference on computer vision and pattern recognition], 248-255, IEEE (2009).
Ronneberger, O., Fischer, P., and Brox, T., "U-Net: Convolutional Networks for Biomedical Image Segmentation," in [Medical Image Computing and Computer-Assisted Intervention -MICCAI 2015], 234-241, Springer International Publishing (2015).
Milletari, F., Navab, N., and Ahmadi, S.-A., "V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation," in [2016 Fourth International Conference on 3D Vision (3DV], 565-571, IEEE (2016).
Otsu, N., "A Threshold Selection Method from Gray-Level Histograms," IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62-66 (1979).
Johnson, J. M. and Khoshgoftaar, T. M., "Survey on deep learning with class imbalance," Journal of Big Data 6, 27 (Mar 2019).
He, K., Zhang, X., Ren, S., and Sun, J., "Deep Residual Learning for Image Recognition," in [Proceedings of IEEE International Conference on Computer Vision], 770-778 (2016).
Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q., "Densely Connected Convolutional Networks," in [Proceedings of IEEE International Conference on Computer Vision], 4700-4708 (2017).
Chattopadhay, A., Sarkar, A., Howlader, P., and Balasubramanian, V. N., "Grad-CAM++: Generalized Gradient-Based Visual Explanations for Deep Convolutional Networks," in [2018 IEEE Winter Conference on Applications of Computer Vision (WACV)], 839-847 (2018).
Li, K., Wu, Z., Peng, K.-C., Ernst, J., and Fu, Y., "Tell Me Where to Look: Guided Attention Inference Network," in [Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition], 9215-9223 (2018).
Ribeiro, M. T., Singh, S., and Guestrin, C., ""Why Should I Trust You?": Explaining the Predictions of Any Classifier," in [Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining], KDD '16, 1135-1144, Association for Computing Machinery, New York, NY, USA (2016).
Lundberg, S. M. and Lee, S.-I., "A Unified Approach to Interpreting Model Predictions," in [Advances in Neural Information Processing Systems], Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., eds., 30, 4765-4774, Curran Associates, Inc. (2017).