Paper published in a book (Scientific congresses and symposiums)
Towards a quantitative analysis of class activation mapping for deep learning-based computer-aided diagnosis
Kang, Hanul; Park, Ho-Min; Ahn, Yuju et al.
2021In Samuelson, Frank W.; Taylor-Phillips, Sian (Eds.) Medical Imaging 2021: Image Perception, Observer Performance, and Technology Assessment
Peer reviewed
 

Files


Full Text
018_2021_KangParkAhnVanMessemDeNeve.pdf
Publisher postprint (2.6 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
class activation mapping; computer-aided diagnosis; deep learning; segmentation; convolutional neural network
Disciplines :
Human health sciences: Multidisciplinary, general & others
Computer science
Author, co-author :
Kang, Hanul
Park, Ho-Min
Ahn, Yuju
Van Messem, Arnout  ;  Université de Liège - ULiège > Département de mathématique > Statistique applquée aux sciences
De Neve, Wesley
Language :
English
Title :
Towards a quantitative analysis of class activation mapping for deep learning-based computer-aided diagnosis
Publication date :
2021
Event name :
SPIE Medical Imaging
Event organizer :
International Society for Optics and Photonics
Event date :
2021
Audience :
International
Main work title :
Medical Imaging 2021: Image Perception, Observer Performance, and Technology Assessment
Editor :
Samuelson, Frank W.
Taylor-Phillips, Sian
Publisher :
SPIE
Pages :
119 - 131
Peer reviewed :
Peer reviewed
Commentary :
11599
Available on ORBi :
since 11 March 2021

Statistics


Number of views
65 (3 by ULiège)
Number of downloads
3 (2 by ULiège)

Scopus citations®
 
8
Scopus citations®
without self-citations
7
OpenCitations
 
1
OpenAlex citations
 
7

Bibliography


Similar publications



Contact ORBi