Athalye, A., Carlini, N., Wagner, D., Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. 2018 CoRR abs/1802.00420.
Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, P., Giacinto, G., Roli, F., Evasion attacks against machine learning at test time. Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2013, Springer, 387–402.
Brown, T.B., Mané, A., Abadi, M., Gilmer, J., Adversarial patch. 2017 CoRR abs/1712.09665.
Carlini, N., Wagner, D.A., Towards evaluating the robustness of neural networks. 2016 CoRR 1608.04644.
Carlini, N., Wagner, D.A., Adversarial examples are not easily detected: Bypassing ten detection methods. 2017 CoRR abs/1705.07263.
Chen, V.C., Tahmoush, D., Miceli, W.J., Radar Micro-Doppler Signatures: Processing and Applications. 2014, Radar, Sonar & Navigation, Institution of Engineering and Technology.
Cheng, S., Dong, Y., Pang, T., Su, H., Zhu, J., Improving black-box adversarial attacks with a transfer-based prior. Advances in Neural Information Processing Systems, 2019, 10932–10942.
Etmann, C., Lunz, S., Maass, P., Schönlieb, C.B., On the connection between adversarial robustness and saliency map interpretability. 2019 arXiv preprint arXiv:1905.04172.
Ghorbani, A., Abid, A., Zou, J., Interpretation of neural networks is Fragile. 2017 CoRR abs/1710.10547.
Goodfellow, I., McDaniel, P., Papernot, N., Making machine learning robust against adversarial inputs. Commun. ACM 61 (2018), 56–66.
Goodfellow, I., Shlens, J., Szegedy, C., Explaining and harnessing adversarial examples. 2014 CoRR abs/1412.6572.
Gragnaniello, D., Marra, F., Poggi, G., Verdoliva, L., Perceptual quality-preserving black-box attack against deep learning image classifiers. 2019 CoRR abs/1902.07776.
Graves, A., Mohamed, A.R., Hinton, G., Speech recognition with deep recurrent neural networks. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, IEEE, 6645–6649.
Hara, K., Kataoka, H., Satoh, Y., 2018. Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet?. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 6546–6555.
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778.
Ilyas, A., Engstrom, L., Athalye, A., Lin, J., Black-box adversarial attacks with limited queries and information. 2018 CoRR abs/1804.08598.
Jalalvand, A., Vandersmissen, B., D. Neve, W., Mannens, E., 2019. Radar signal processing for human identification by means of reservoir computing networks. In: IEEE Radar Conference, pp. 1–6.
Jokanovic, B., Amin, M., Ahmad, F., Radar fall motion detection using deep learning. 2016 IEEE Radar Conference (RadarConf), 2016, IEEE, 1–6.
Kim, Y., Moon, T., Human detection and activity classification based on micro-doppler signatures using deep convolutional neural networks. IEEE Geosci. Remote Sensing Lett. 13 (2015), 8–12.
Kim, Y., Toomajian, B., Hand gesture recognition using micro-doppler signatures with convolutional neural network. IEEE Access 4 (2016), 7125–7130.
Krizhevsky, A., Sutskever, I., Hinton, G.E., Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 2012, 1097–1105.
Kurakin, A., Goodfellow, I., Bengio, S., Dversarial examples in the physical world. 2016 CoRR abs/1607.02533.
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86 (1998), 2278–2324.
Lipton, Z.C., The mythos of model interpretability. 2016 arXiv preprint arXiv:1606.03490.
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A., Towards deep learning models resistant to adversarial attacks. 2017 CoRR abs/1706.06083.
Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P., 2017. Universal adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1765–1773.
Nair, N., Thomas, C., Jayagopi, D.B., 2018. Human activity recognition using temporal convolutional network. In: Proceedings of the 5th international Workshop on Sensor-based Activity Recognition and Interaction, pp. 1–8.
Ozbulak, U., Gasparyan, M., D. Neve, W., Va. Messem, A., Perturbation analysis of gradient-based adversarial attacks. Pattern Recognit. Lett., 2020.
Papernot, N., McDaniel, P.D., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A., The limitations of deep learning in adversarial settings. 2015 CoRR abs/1511.07528.
Rajpoot, Q.M., Jensen, C.D., Video surveillance: Privacy issues and legal compliance. Promoting Social Change and Democracy Through Information Technology, 2015, IGI global, 69–92.
Ross, A.S., Doshi-Velez, F., 2018. Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients. In: Thirty-second AAAI Conference on Artificial Intelligence.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L., Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115 (2015), 211–252.
Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., Batra, D., 2016. Grad-Cam: why did you say that? Visual explanations from deep networks via gradient-based localization. In: CVPR 2016.
Seyfioğlu, M.S., Özbayoğlu, A.M., Gürbüz, S.Z., Deep convolutional autoencoder for radar-based classification of similar aided and unaided human activities. IEEE Trans. Aerosp. Electron. Syst. 54 (2018), 1709–1723.
Shrikumar, A., Greenside, P., Kundaje, A., Learning important features through propagating activation differences. 2017 CoRR abs/1704.02685.
Simonyan, K., Vedaldi, A., Zisserman, A., 2014. Deep inside convolutional networks: Visualising image classification models and saliency maps. In: Workshop, Proceedings of 2th International Conference on Learning Representations (ICLR).
Simonyan, K., Zisserman, A., Very deep convolutional networks for large-scale image recognition. 2014 CoRR abs/1409.1556.
Staples, P., Thinking about buying a smart home device? heres what you need to know about security. 2019 https://www.forbes.com. (Accessed 26 July 2019).
Sun, L., Tan, M., Zhou, Z., A survey of practical adversarial example attacks. Cybersecurity, 1, 2018, 9.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2016. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826.
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R., Intriguing properties of neural networks. 2013 CoRR abs/1312.6199.
Tao, G., Ma, S., Liu, Y., Zhang, X., Attacks meet interpretability: Attribute-steered detection of adversarial samples. Advances in Neural Information Processing Systems, 2018, 7717–7728.
Tu, C.C., Ting, P., Chen, P.Y., Liu, S., Zhang, H., Yi, J., Hsieh, C.J., Cheng, S.M., 2019. Autozoom: Autoencoder-based zeroth order optimization method for attacking black-box neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 742–749.
Vandersmissen, B., Knudde, N., Jalalvand, A., Couckuyt, I., Bourdoux, A., D. Neve, W., Dhaene, T., Indoor person identification using a low-power fmcw radar. IEEE Trans. Geosci. Remote Sens. 56 (2018), 3941–3952.
Vandersmissen, B., Knudde, N., Jalalvand, A., Couckuyt, I., Dhaene, T., D. Neve, W., Indoor human activity recognition using high-dimensional sensors and deep neural networks. Neural Comput. Appl., 2019, 1–15.
Wang, S., Song, J., Lien, J., Poupyrev, I., Hilliges, O., Interacting with soli: Exploring fine-grained dynamic gesture recognition in the radio-frequency spectrum. Proceedings of the 29th Annual Symposium on User Interface Software and Technology, 2016, ACM, 851–860.
Wu, D., Wang, Y., Xia, S.T., Bailey, J., Ma, X., 2020. Skip connections matter: On the transferability of adversarial examples generated with resnets. In: International Conference on Learning Representations.
Xie, S., Girshick, R., Dollár, Z., He, K., 2017. Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500.
Yao, L., Qian, Y., DT-3DResNet-LSTM: An architecture for temporal activity recognition in videos. Pacific Rim Conference on Multimedia, 2018, Springer, 622–632.
Zeiler, M.D., Fergus, R., Visualizing and understanding convolutional networks. European Conference on Computer Vision, 2014, Springer, 818–833.
Zhang, H.B., Zhang, Y.X., Zhong, B., Lei, Q., Yang, L., Du, J.X., Chen, D.S., A comprehensive survey of vision-based human action recognition methods. Sensors, 19(1005), 2019.
Zhao, M., Li, T., Ab. Alsheikh, M., Tian, Y., Zhao, H., Torralba, A., Katabi, D., 2018a. Through-Wall human pose estimation using radio signals. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7356–7365.
Zhao, Y., Yang, R., Chevalier, G., Xu, X., Zhang, Z., Deep residual bidir-LSTM for human activity recognition using wearable sensors. Math. Probl. Eng., 2018, 2018.
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A., 2016. Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929.