Christmann A, Steinwart I (2004) On robust properties of convex risk minimization methods for pattern recognition. J Mach Learning Res 5: 1007-1034.
Christmann A, Steinwart I (2007) Consistency and robustness of kernel based regression in convex minimization. Bernoulli 13: 799-819.
Christmann A, Steinwart I (2008) Consistency of kernel based quantile regression. Appl Stoch Models Bus Ind 24: 171-183.
Christmann A, van Messem A (2008) Bouligand derivatives and robustness of support vector machines for regression. J Mach Learning Res 9: 915-936.
Christmann A, van Messem A, Steinwart I (2009) On consistency and robustness properties of support vector machines for heavy-tailed distributions. Stat Interface 2: 311-327.
Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines. Cambridge University Press, Cambridge.
Hampel FR (1968) Contributions to the theory of robust estimation. Unpublished Ph. D. thesis, Department of Statistics, University of California, Berkeley.
Hampel FR (1974) The influence curve and its role in robust estimation. J Am Stat Assoc 69: 383-393.
Hosking J, Wallis J (1989) Parameter and quantile estimation for the generalized pareto distribution. Technometrics 29: 339-349.
Huber PJ (1967) The behavior of maximum likelihood estimates under nonstandard conditions. Proceedings of the 5th Berkeley Symposium 1: 221-233.
Karatzoglou A, Smola A, Hornik K, Zeileis A (2004) kernlab-an S4 package for kernel methods in R. J Stat Softw 11(9): 1-20.
Koenker R (2005) Quantile Regression. Cambridge University Press, New York.
Lax PD (2002) Functional analysis. Wiley, New York.
Pickands J (1975) Statistical inference using extreme order statistics. Ann Stat 3: 119-131.
R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
Robinson SM (1987) Local structure of feasible sets in nonlinear programming. Part III. Stability and sensitivity. Math Programming Study 30: 45-66.
Robinson SM (1991) An implicit-function theorem for a class of nonsmooth functions. Math Oper Res 16: 292-309.
Schölkopf B, Smola AJ (2002) Learning with Kernels. Support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge.
Steinwart I, Christmann A (2008) How SVMs can estimate quantiles and the median. In: Platt JC, Koller D, Singer Y, Roweis S (eds) Advances in neural information processing systems, vol 20. MIT Press, Cambridge.
Steinwart I, Christmann A (2008) Support vector machines. Springer, New York.
Vapnik VN (1998) Statistical learning theory. Wiley, New York.