[en] Large-scale electrical currents and Alfvénic waves are the two main drivers responsible for producing planetary aurorae. The relative contribution of each process is a central question in terrestrial auroral science, and poorly understood for other planets due to the relatively rare opportunity of in-situ spacecraft measurements. Here, we present observations of Jupiter's aurorae from the Hubble Space Telescope (HST) contemporaneous with Juno magnetometer measurements in the magnetosphere. For three successive days, we found that the magnetospheric ultralow-frequency (ULF) wave activity (with periods of 1–60 min) was correlated with auroral power. This was especially true for the Alfvénic modes. We further performed a statistical analysis based on HST visits during Juno's third and seventh orbit, which revealed a systematic correlation between ULF wave and auroral activity. Our results imply that Alfvénic wave power could be an important source in driving Jupiter's aurorae, as theoretically predicted.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Pan, Dong-Xiao
Yao, Zhong-Hua
Manners, Harry
Dunn, William
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Zhang, Bin-Zheng
Guo, Rui-Long
Wei, Yong
Language :
English
Title :
Ultralow-Frequency Waves in Driving Jovian Aurorae Revealed by Observations From HST and Juno
Publication date :
2021
Journal title :
Geophysical Research Letters
ISSN :
0094-8276
eISSN :
1944-8007
Publisher :
Wiley, Washington, United States - District of Columbia
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bagenal, F., Wilson, R. J., Siler, S., Paterson, W. R., & Kurth, W. S. (2016). Survey of Galileo plasma observations in Jupiter's plasma sheet. Journal of Geophysical Research: Planets, 121, 871–894. https://doi.org/10.1002/2016JE005009
Bonfond, B., Grodent, D., Gérard, J.-C., Stallard, T., Clarke, J. T., Yoneda, M., et al. (2012). Auroral evidence of Io's control over the magnetosphere of Jupiter. Geophysical Research Letters, 39, L01105. https://doi.org/10.1029/2011GL050253
Bonfond, B., Hess, S., Gérard, J.-C., Grodent, D., Radioti, A., Chantry, V., et al. (2013). Evolution of the io footprint brightness I: Far-UV observations. Planetary and Space Science, 88, 64–75. https://doi.org/10.1016/j.pss.2013.05.023
Bonfond, B., Yao, Z., Gladstone, R., Grodent, D., Gerard, J.-C., Matar, J., et al. (2021). Are dawn storms Jupiter's auroral substorms?AGU Advances. https://doi.org/10.1029/2020AV000275
Bonfond, B., Yao, Z., & Grodent, D. (2020b). Six pieces of evidence against the corotation enforcement theory to explain the main aurora at Jupiter. Journal of Geophysical Research: Space Physics, 125, e2020JA028152. https://doi.org/10.1029/2020JA028152
Chané, E., Saur, J., Keppens, R., & Poedts, S. (2017). How is the Jovian main auroral emission affected by the solar wind?Journal of Geophysical Research: Space Physics, 122, 1960–1978. https://doi.org/10.1002/2016JA023318
Chaston, C. C., Peticolas, L. M., Carlson, C. W., McFadden, J. P., Mozer, F., Wilber, M., et al. (2005). Energy deposition by Alfvén waves into the dayside auroral oval: Cluster and fast observations. Journal of Geophysical Research, 110, A02211. https://doi.org/10.1029/2004JA010483
Connerney, J. E. P., Benn, M., Bjarno, J. B., Denver, T., Espley, J., Jorgensen, J. L., et al. (2017). The Juno Magnetic Field Investigation. Space Science Reviews, 213(1–4), 39–138. https://doi.org/10.1007/s11214-017-0334-z
Cowley, S., & Bunce, E. (2001). Origin of the main auroral oval in Jupiter's coupled magnetosphere–ionosphere system. Planetary and Space Science, 49(10), 1067–1088.
Dumont, M., Grodent, D., Radioti, A., Bonfond, B., Roussos, E., & Paranicas, C. (2018). Evolution of the auroral signatures of Jupiter's magnetospheric injections. Journal of Geophysical Research: Space Physics, 123, 8489–8501. https://doi.org/10.1029/2018JA025708
Dungey, J. W. (1961). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6(2), 47–48. https://doi.org/10.1103/PhysRevLett.6.47
Dunn, W. R., Branduardi-Raymont, G., Elsner, R. F., Vogt, M. F., Lamy, L., Ford, P. G., et al. (2016). The impact of an ICME on the Jovian x-ray aurora. Journal of Geophysical Research: Space Physics, 121, 2274–2307. https://doi.org/10.1002/2015JA021888
Gérard, J.-C., Bonfond, B., Mauk, B. H., Gladstone, G. R., Yao, Z. H., Greathouse, T. K., et al. (2019). Contemporaneous observations of Jovian energetic auroral electrons and ultraviolet emissions by the Juno spacecraft. Journal of Geophysical Research: Space Physics, 124, 8298–8317. https://doi.org/10.1029/2019JA026862
Gérard, J.-C., & Singh, V. (1982). A model of energy deposition of energetic electrons and EUV emission in the Jovian and Saturnian atmospheres and implications. Journal of Geophysical Research, 87(A6), 4525–4532. https://doi.org/10.1029/JA087iA06p04525
Gershman, D. J., Connerney, J. E. P., Kotsiaros, S., DiBraccio, G. A., Martos, Y. M., Viñas, A. F., et al. (2019). Alfvénic fluctuations associated with Jupiter's auroral emissions. Geophysical Research Letters, 46, 7157–7165. https://doi.org/10.1029/2019GL082951
Grodent, D. (2015). A brief review of ultraviolet auroral emissions on giant planets. Space Science Reviews, 187(1–4), 23–50. https://doi.org/10.1007/s11214-014-0052-8
Grodent, D., Bonfond, B., Yao, Z., Gérard, J.-C., Radioti, A., Dumont, M., et al. (2018). Jupiter's aurora observed with HST during Juno orbits 3 to 7. Journal of Geophysical Research: Space Physics, 123, 3299–3319. https://doi.org/10.1002/2017JA025046
Gurnett, D., Kurth, W., Hospodarsky, G., Persoon, A., Zarka, P., Lecacheux, A., et al. (2002). Control of Jupiter's radio emission and aurorae by the solar wind. Nature, 415(6875), 985–987. https://doi.org/10.1038/415985a
Haggerty, D. K., Mauk, B. H., Paranicas, C. P., Clark, G., Kollmann, P., Rymer, A. M., et al. (2019). Jovian injections observed at high latitude. Geophysical Research Letters, 46, 9397–9404. https://doi.org/10.1029/2019GL083442
Hess, S., Echer, E., & Zarka, P. (2012). Solar wind pressure effects on Jupiter decametric radio emissions independent of Io. Planetary and Space Science, 70(1), 114–125. https://doi.org/10.1016/j.pss.2012.05.011
Hess, S., Echer, E., Zarka, P., Lamy, L., & Delamere, P. (2014). Multi-instrument study of the Jovian radio emissions triggered by solar wind shocks and inferred magnetospheric subcorotation rates. Planetary and Space Science, 99, 136–148. https://doi.org/10.1016/j.pss.2014.05.015
Hill, T. (1979). Inertial limit on corotation. Journal of Geophysical Research, 84(A11), 6554–6558. https://doi.org/10.1029/JA084iA11p06554
Huang, N. E., & Wu, Z. (2008). A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Reviews of Geophysics, 46, RG2006. https://doi.org/10.1029/2007RG000228
Kataoka, R., Miyoshi, Y., & Morioka, A. (2009). Hilbert-Huang transform of geomagnetic pulsations at auroral expansion onset. Journal of Geophysical Research, 114, A09202. https://doi.org/10.1029/2009JA014214
Keiling, A., Thaller, S., Wygant, J., & Dombeck, J. (2019). Assessing the global Alfven wave power flow into and out of the auroral acceleration region during geomagnetic storms. Science Advances, 5(6), eaav8411. https://doi.org/10.1126/sciadv.aav8411
Keiling, A., Wygant, J., Cattell, C., Mozer, F., & Russell, C. (2003). The global morphology of wave Poynting flux: Powering the aurora. Science, 299(5605), 383–386. https://doi.org/10.1126/science.1080073
Khurana, K. K., & Kivelson, M. G. (1989). Ultralow frequency MHD waves in Jupiter's middle magnetosphere. Journal of Geophysical Research, 94(A5), 5241–5254. https://doi.org/10.1029/JA094iA05p05241
Khurana, K. K., Kivelson, M. G., Vasyliunas, V. M., Krupp, N., Woch, J., Lagg, A., et al. (2004). The configuration of Jupiter's magnetosphere. In F.Bagenal, T. E.Dowling, & W. B.McKinnon (Eds.), Jupiter: The planet, satellites and magnetosphere (Vol. 1, pp. 593–616). Cambridge: Cambridge University Press.
Kimura, T., Badman, S. V., Tao, C., Yoshioka, K., Murakami, G., Yamazaki, A., et al. (2015). Transient internally driven aurora at Jupiter discovered by Hisaki and the Hubble Space Telescope. Geophysical Research Letters, 42, 1662–1668. https://doi.org/10.1002/2015GL063272
Krupp, N., Vasyliunas, V. M., Woch, J., Lagg, A., Khurana, K. K., Kivelson, M. G., et al. (2004). Dynamics of the Jovian magnetosphere. In F.Bagenal, T. E.Dowling, & W. B.McKinnon (Eds.), Jupiter: The planet, satellites and magnetosphere (Vol. 1, pp. 617–638). Cambridge, UK: Cambridge University Press.
Lotko, W., Streltsov, A. V., & Carlson, C. W. (1998). Discrete auroral arc, electrostatic shock and suprathermal electrons powered by dispersive, anomalously resistive field line resonance. Geophysical Research Letters, 25(24), 4449–4452. https://doi.org/10.1029/1998GL900200
Louarn, P., Roux, A., Perraut, S., Kurth, W. S., & Gurnett, D. A. (2000). A study of the Jovian “energetic magnetospheric events” observed by Galileo: Role in the radial plasma transport. Journal of Geophysical Research, 105(A6), 13073–13088. https://doi.org/10.1029/1999JA900478
Manners, H., & Masters, A. (2019). First evidence for multiple-harmonic standing Alfvén waves in Jupiter's equatorial plasma sheet. Geophysical Research Letters, 46, 9344–9351. https://doi.org/10.1029/2019GL083899
Manners, H., Masters, A., & Yates, J. N. (2018). Standing Alfven waves in Jupiter's magnetosphere as a source of similar to 10-to 60-min quasiperiodic pulsations. Geophysical Research Letters, 45, 8746–8754. https://doi.org/10.1029/2018GL078891
Mauk, B. H., Clarke, J. T., Grodent, D., Waite, J. H., Paranicas, C. P., & Williams, D. J. (2002). Transient aurora on Jupiter from injections of magnetospheric electrons. Nature, 415(6875), 1003–1005. https://doi.org/10.1038/4151003a
Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., et al. (2017). Discrete and broadband electron acceleration in Jupiter's powerful aurora. Nature, 549(7670), 66–69. https://doi.org/10.1038/nature23648
Newell, P. T., Sotirelis, T., & Wing, S. (2009). Diffuse, monoenergetic, and broadband aurora: The global precipitation budget. Journal of Geophysical Research, 114, A09207. https://doi.org/10.1029/2009JA014326
Nichols, J. D., Allegrini, F., Bagenal, F., Bunce, E. J., Cowley, S. W. H., Ebert, R. W., et al. (2020). An enhancement of Jupiter's main auroral emission and magnetospheric currents. Journal of Geophysical Research: Space Physics, 125, e27904. https://doi.org/10.1029/2020JA027904
Nichols, J. D., Bunce, E. J., Clarke, J. T., Cowley, S. W. H., Gérard, J.-C., Grodent, D., & Pryor, W. R. (2007). Response of Jupiter's UV auroras to interplanetary conditions as observed by the Hubble Space Telescope during the Cassini flyby campaign. Journal of Geophysical Research, 112, A02203. https://doi.org/10.1029/2006JA012005
Rilling, G., & Flandrin, P. (2009). Sampling effects on the empirical mode decomposition. Advances in Adaptive Data Analysis, 1(1), 43–59. https://doi.org/10.1142/S1793536909000023
Sarkango, Y., Jia, X., & Toth, G. (2019). Global MHD simulations of the response of Jupiter's magnetosphere and ionosphere to changes in the solar wind and IMF. Journal of Geophysical Research: Space Physics, 124, 5317–5341. https://doi.org/10.1029/2019JA026787
Saur, J., Janser, S., Schreiner, A., Clark, G., Mauk, B. H., Kollmann, P., et al. (2018). Wave-particle interaction of Alfven waves in Jupiter's magnetosphere: Auroral and magnetospheric particle acceleration. Journal of Geophysical Research: Space Physics, 123, 9560–9573. https://doi.org/10.1029/2018JA025948
Saur, J., Pouquet, A., & Matthaeus, W. H. (2003). An acceleration mechanism for the generation of the main auroral oval on Jupiter. Geophysical Research Letters, 30(5), 1260. https://doi.org/10.1029/2002GL015761
Sinclair, J. A., Orton, G. S., Fernandes, J., Kasaba, Y., Sato, T. M., Fujiyoshi, T., et al. (2019). A brightening of Jupiter's auroral 7.8-μm CH4 emission during a solar-wind compression. Nature Astronomy, 3, 607–613. https://doi.org/10.1038/s41550-019-0743-x
Southwood, D. J., & Kivelson, M. G. (2001). A new perspective concerning the influence of the solar wind on the Jovian magnetosphere. Journal of Geophysical Research, 106(A4), 6123–6130. https://doi.org/10.1029/2000JA000236
Stallone, A., Cicone, A., & Materassi, M. (2020). New insights and best practices for the successful use of empirical mode decomposition, iterative filtering and derived algorithms. Scientific Reports, 10(1), 15161.
Vasyliunas, V. M. (1983). Plasma distribution and flow. In A. J.Dessler (Ed.), Physics of the Jovian magnetosphere (pp. 395–453). Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511564574.013
Waite, J., Gladstone, G., Lewis, W., Goldstein, R., McComas, D., Riley, P., et al. (2001). An auroral flare at Jupiter. Nature, 410(6830), 787–789. https://doi.org/10.1038/35071018
Waite, J. H.Jr., Cravens, T. E., Kozyra, J., Nagy, A. F., Atreya, S. K., & Chen, R. H. (1983). Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere. Journal of Geophysical Research, 88(A8), 6143–6163. https://doi.org/10.1029/JA088iA08p06143
Woch, J., Krupp, N., Khurana, K. K., Kivelson, M. G., Roux, A., Perraut, S., et al. (1999). Plasma sheet dynamics in the Jovian magnetotail: Signatures for substorm-like processes ?Geophysical Research Letters, 26(14), 2137–2140. https://doi.org/10.1029/1999GL900493
Yao, Z. H., Bonfond, B., Clark, G., Grodent, D., Dunn, W. R., Vogt, M. F., et al. (2020a). Reconnection- and dipolarization-driven auroral dawn storms and injections. Journal of Geophysical Research: Space Physics, 125, e2019JA027663. https://doi.org/10.1029/2019JA027663
Yao, Z. H., Bonfond, B., Grodent, D., Chané, E., Dunn, W. R., Kurth, W. S., et al. (2020b). Auroral diagnosis of solar wind interaction with Jupiter's magnetosphere. arXiv:2004.10140. https://arxiv.org/abs/2004.10140.
Yao, Z. H., Grodent, D., Kurth, W. S., Clark, G., Mauk, B. H., Kimura, T., et al. (2019). On the relation between Jovian aurorae and the loading/unloading of the magnetic flux: Simultaneous measurements from Juno, Hubble Space Telescope, and Hisaki. Geophysical Research Letters, 46, 11632–11641. https://doi.org/10.1029/2019GL084201
Yao, Z. H., Grodent, D., Ray, L. C., Rae, I. J., Coates, A. J., Pu, Z. Y., et al. (2017). Two fundamentally different drivers of dipolarizations at Saturn. Journal of Geophysical Research: Space Physics, 122, 4348–4356. https://doi.org/10.1002/2017JA024060
Zhang, B., Delamere, P. A., Yao, Z., Bonfond, B., Lin, D., Sorathia, K. A., et al. (2021). How Jupiter's Unusual Magnetospheric Topology Structures Its Aurora. Science Advances. http://doi.org/10.1126/sciadv.abd1204
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.