[en] BACKGROUND: Spinal muscular atrophy (SMA) is a rare and devastating condition for which new disease-modifying treatments have recently been approved. Given the increasing importance of economic considerations in healthcare decision-making, this review summarizes the studies assessing the cost of SMA and economic evaluations of treatments. A systematic review of the literature in PubMed and Scopus up to 15 September 2020 was conducted according to PRISMA guidelines. RESULTS: Nine studies reporting the annual cost of care of patients with SMA and six evaluations of the cost-effectiveness of SMA treatments were identified. The average annual cost of SMA1, the most frequent and severe form in which symptoms appear before the age of 6 months were similar according to the different studies, ranged from $75,047 to $196,429 per year. The yearly costs for the forms of the later-onset form, called SMA2, SMA3, and SMA4, which were usually pooled in estimates of healthcare costs, were more variable, ranging from $27,157 to $82,474. The evaluations of cost-effectiveness of treatment compared nusinersen treatment against standard of care (n = 3), two treatments (nusinersen and onasemnogene abeparvovec) against each other and no drug treatment (n = 1), nusinersen versus onasemnogene abeparvovec (n = 1), and standard of care versus nusinersen with and without newborn screening (n = 1). The incremental cost-effectiveness ratio (ICER) of nusinersen compared to standard of care in SMA1 ranged from $210,095 to $1,150,455 per quality-adjusted life years (QALY) gained and that for onasemnogene abeparvovec ranged from $32,464 to $251,403. For pre-symptomatic patients, the ICER value ranged from $206,409 to $735,519. The ICERs for later-onset forms of SMA (2, 3 and 4) were more diverse ranging from $275,943 to $8,438,049. CONCLUSION: This review confirms the substantial cost burden of standard of care for SMA patients and the high cost-effectiveness ratios of the approved drugs at the current price when delivered in post-symptomatic patients. Since few studies have been conducted so far, there is a need for further prospective and independent economic studies in pre- and post-symptomatic patients.
Disciplines :
Neurology
Author, co-author :
Dangouloff, Tamara ; Université de Liège - ULiège > Département des sciences cliniques > Neuropédiatrie
Botty, Camille
Beaudart, Charlotte ; Université de Liège - ULiège > Département des sciences de la santé publique > Santé publique, Epidémiologie et Economie de la santé
Servais, Laurent ; Université de Liège - ULiège > Département des sciences cliniques > Département des sciences cliniques
Hiligsmann, Mickaël
Language :
English
Title :
Systematic literature review of the economic burden of spinal muscular atrophy and economic evaluations of treatments.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Verhaart IEC, Robertson A, Wilson IJ, Aartsma-Rus A, Cameron S, Jones CC, et al. Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy—a literature review. Orphanet J Rare Dis. 2017;12(1):124. DOI: 10.1186/s13023-017-0671-8
Zerres K, Rudnik-Schoneborn S. Natural history in proximal spinal muscular atrophy, Clinical analysis of 445 patients and suggestions for a modification of existing classifications. Arch Neurol. 1995;52(5):518–23. DOI: 10.1001/archneur.1995.00540290108025
Wijngaarde CA, Stam M, Otto LAM, van Eijk RPA, Cuppen I, Veldhoen ES, et al. Population-based analysis of survival in spinal muscular atrophy. Neurology. 2020;94(15):e1634–44. DOI: 10.1212/WNL.0000000000009248
Chabanon A, Seferian AM, Daron A, Pereon Y, Cances C, Vuillerot C, et al. Prospective and longitudinal natural history study of patients with Type 2 and 3 spinal muscular atrophy: baseline data NatHis-SMA study. PLoS ONE. 2018;13(7):e0201004. DOI: 10.1371/journal.pone.0201004
Zerres K, Rudnik-Schoneborn S, Forrest E, Lusakowska A, Borkowska J, Hausmanowa-Petrusewicz I. A collaborative study on the natural history of childhood and juvenile onset proximal spinal muscular atrophy (type II and III SMA): 569 patients. J Neurol Sci. 1997;146(1):67–72. DOI: 10.1016/S0022-510X(96)00284-5
Landfeldt E, Edstrom J, Sejersen T, Tulinius M, Lochmuller H, Kirschner J. Quality of life of patients with spinal muscular atrophy: a systematic review. Eur J Paediatr Neurol EJPN. 2019;23(3):347–56. DOI: 10.1016/j.ejpn.2019.03.004
Ramdas S, Servais L. New treatments in spinal muscular atrophy: an overview of currently available data. Expert Opin Pharmacother. 2020;21(3):307–15. DOI: 10.1080/14656566.2019.1704732
Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL, Kirschner J, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med. 2017;377(18):1723–32. DOI: 10.1056/NEJMoa1702752
Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377(18):1713–22. DOI: 10.1056/NEJMoa1706198
Lowes L, Al-Zaidy S, Shell R, Arnold W, Rodino-Klapac L, Prior T, et al. AVXS-101 phase 1 gene therapy clinical trial in SMA Type 1: patients treated early with the proposed therapeutic dose were able to sit unassisted at a younger age. Neuromuscular Disorders NMD. 2017;27:S208–9. DOI: 10.1016/j.nmd.2017.06.414
Roche. FDA approves Roche’s Evrysdi (risdiplam) for treatment of spinal muscular atrophy (SMA) in adults and children 2 months and older 2020. https://www.roche.com/media/releases/med-cor-2020-08-10b.htm.
Dangouloff T, Servais L. Clinical evidence supporting early treatment of patients with spinal muscular atrophy: current perspectives. Ther Clin Risk Manag. 2019;15:1153–61. DOI: 10.2147/TCRM.S172291
De Vivo DC, Bertini E, Swoboda KJ, Hwu WL, Crawford TO, Finkel RS, et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: interim efficacy and safety results from the Phase 2 NURTURE study. Neuromuscular Disorders NMD. 2019;29(11):842–56. DOI: 10.1016/j.nmd.2019.09.007
Boemer F, Caberg JH, Dideberg V, Dardenne D, Bours V, Hiligsmann M, et al. Newborn screening for SMA in Southern Belgium. Neuromuscular Disorders NMD. 2019;29(5):343–9. DOI: 10.1016/j.nmd.2019.02.003
Dangouloff T, Burghes A, Tizzano EF, Servais L. 244th ENMC international workshop: newborn screening in spinal muscular atrophy May 10–12, 2019, Hoofdorp, The Netherlands. Neuromuscular Disorders NMD. 2020;30(1):93–103. DOI: 10.1016/j.nmd.2019.11.002
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. DOI: 10.1371/journal.pmed.1000097
Watts RD, Li IW. Use of checklists in reviews of health economic evaluations, 2010 to 2018. Value Health. 2019;22(3):377–82. DOI: 10.1016/j.jval.2018.10.006
Evers S, Goossens M, de Vet H, van Tulder M, Ament A. Criteria list for assessment of methodological quality of economic evaluations: Consensus on Health Economic Criteria. Int J Technol Assess Health Care. 2005;21(2):240–5. DOI: 10.1017/S0266462305050324
Odnoletkova I. CHEC-extended: a tool for the quality assessment of economic evaluations of healthcare interventions 2014. https://www.researchgate.net/publication/314003661_CHEC-Extended_A_tool_for_the_quality_assessment_of_economic_evaluations_of_healthcare_interventions.
Webster I. Official Inflation Data, $100 in 2019 → 2020/Inflation Calculator. 2020 [Based on U.S. Bureau of Labor Statisctics (Consumer Price Index)]. https://www.officialdata.org/us/inflation/.
Statistics USBoL. Consumer Price Index 2020. https://www.bls.gov/cpi/.
OCDE. Exchange rate (indicator) 2020 [Taux de change (indicateur)]. https://data.oecd.org/fr/conversion/taux-de-change.htm#indicator-chart.
LewinGroup. Cost of Amyotrophic Lateral Sclerosis, Muscular Dystrophy, and Spinal Muscular Atrophy in the United States. Final Report—MDA Cost of Illness in the United States. 2012, March, 1.
Armstrong EP, Malone DC, Yeh WS, Dahl GJ, Lee RL, Sicignano N. The economic burden of spinal muscular atrophy. J Med Econ. 2016;19(8):822–6. DOI: 10.1080/13696998.2016.1198355
Lee M Jr, Franca UL, Graham RJ, McManus ML. Pre-nusinersen hospitalization costs of children with spinal muscular atrophy. Pediatr Neurol. 2019;92:3–5. DOI: 10.1016/j.pediatrneurol.2018.11.002
Farrar MA, Carey KA, Paguinto SG, Chambers G, Kasparian NA. Financial, opportunity and psychosocial costs of spinal muscular atrophy: an exploratory qualitative analysis of Australian carer perspectives. BMJ Open. 2018;8(5):e020907. DOI: 10.1136/bmjopen-2017-020907
Darbà J. Direct medical costs of spinal muscular atrophy in the Catalonia region: a population-based analysis. Clin Drug Investig. 2020;40(4):335–41. DOI: 10.1007/s40261-020-00897-4
Peña-Longobardo LM, Aranda-Reneo I, Oliva-Moreno J, Litzkendorf S, Durand-Zaleski I, Tizzano E, et al. The economic impact and health-related quality of life of spinal muscular atrophy. An analysis across Europe. Int J Environ Res Public Health. 2020;17(16):5640. DOI: 10.3390/ijerph17165640
Droege M, Sproule D, Arjunji R, Gauthier-Loiselle M, Cloutier M, Dabbous O. Economic burden of spinal muscular atrophy in the United States: a contemporary assessment. J Med Econ. 2020;23(1):70–9. DOI: 10.1080/13696998.2019.1646263
Klug C, Schreiber-Katz O, Thiele S, Schorling E, Zowe J, Reilich P, et al. Disease burden of spinal muscular atrophy in Germany. Orphanet J Rare Dis. 2016;11(1):58. DOI: 10.1186/s13023-016-0424-0
Chambers GM, Settumba SN, Carey KA, Cairns A, Menezes MP, Ryan M, et al. Prenusinersen economic and health-related quality of life burden of spinal muscular atrophy. Neurology. 2020;95(1):e1–10. DOI: 10.1212/WNL.0000000000009715
Jalali A, Rothwell E, Botkin JR, Anderson RA, Butterfield RJ, Nelson RE. Cost-effectiveness of Nusinersen and universal newborn screening for spinal muscular atrophy. J Pediatr. 2020;227:274–80. DOI: 10.1016/j.jpeds.2020.07.033
Malone DC, Dean R, Arjunji R, Jensen I, Cyr P, Miller B, et al. Cost-effectiveness analysis of using onasemnogene abeparvocec (AVXS-101) in spinal muscular atrophy type 1 patients. J Mark Access Health Policy. 2019;7(1):1601484. DOI: 10.1080/20016689.2019.1601484
Zuluaga-Sanchez S, Teynor M, Knight C, Thompson R, Lundqvist T, Ekelund M, et al. Cost effectiveness of nusinersen in the treatment of patients with infantile-onset and later-onset spinal muscular atrophy in Sweden. PharmacoEconomics. 2019;37(6):845–65. DOI: 10.1007/s40273-019-00769-6
ICER. Spinraza® and Zolgensma® for Spinal Muscular Atrophy: Effectiveness and Value [Report]. Institute for Clinical and Economic Review; 2019. Updated 24 May 2019. https://icer-review.org/wp-content/uploads/2018/07/ICER_SMA_Final_Evidence_Report_052419.pdf.
NCP. Cost-effectiveness of Nusinersen (Spinraza) for the treatment of 5q spinal muscular atrophy (SMA). National Center for Pharmacoeconomics; 2017. http://www.ncpe.ie/wp-content/uploads/2017/08/Summary-Nusinersen.pdf.
D’Amico A, Mercuri E, Tiziano FD, Bertini E. Spinal muscular atrophy. Orphanet J Rare Dis. 2011;6(1):71. DOI: 10.1186/1750-1172-6-71
Finkel RS, McDermott MP, Kaufmann P, Darras BT, Chung WK, Sproule DM, et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology. 2014;83(9):810–7. DOI: 10.1212/WNL.0000000000000741
Kolb SJ, Coffey CS, Yankey JW, Krosschell K, Arnold WD, Rutkove SB, et al. Natural history of infantile-onset spinal muscular atrophy. Ann Neurol. 2017;82(6):883–91. DOI: 10.1002/ana.25101
Mercuri E, Darras BT, Chiriboga CA, Day JW, Campbell C, Connolly AM, et al. Nusinersen versus Sham control in later-onset spinal muscular atrophy. N Engl J Med. 2018;378(7):625–35. DOI: 10.1056/NEJMoa1710504
Aragon-Gawinska K, Seferian AM, Daron A, Gargaun E, Vuillerot C, Cances C, et al. Nusinersen in patients older than 7 months with spinal muscular atrophy type 1: a cohort study. Neurology. 2018;91(14):e1312–8. DOI: 10.1212/WNL.0000000000006281
Aragon-Gawinska K, Daron A, Ulinici A, Vanden Brande L, Seferian A, Gidaro T, et al. Sitting in patients with spinal muscular atrophy type 1 treated with nusinersen. Dev Med Child Neurol. 2020;62(3):310–4. DOI: 10.1111/dmcn.14412
Cardenas J, Menier M, Heitzer MD, Sproule DM. High healthcare resource use in hospitalized patients with a diagnosis of spinal muscular atrophy type 1 (SMA1): retrospective analysis of the kids’ inpatient database (KID). PharmacoEconomics Open. 2019;3(2):205–13. DOI: 10.1007/s41669-018-0093-0
Schoser B, Hahn A, James E, Gupta D, Gitlin M, Prasad S. A systematic review of the health economics of Pompe disease. Pharmacoecon Open. 2019;3(4):479–93. DOI: 10.1007/s41669-019-0142-3
Grosse SD, Do TQN, Vu M, Feng LB, Berry JG, Sawicki GS. Healthcare expenditures for privately insured US patients with cystic fibrosis, 2010–2016. Pediatr Pulmonol. 2018;53(12):1611–8. DOI: 10.1002/ppul.24178
Orenstein DM, Abood RN. Cost(s) of caring for patients with cystic fibrosis. Curr Opin Pediatr. 2018;30(3):393–8. DOI: 10.1097/MOP.0000000000000625
Larkindale J, Yang W, Hogan PF, Simon CJ, Zhang Y, Jain A, et al. Cost of illness for neuromuscular diseases in the United States. Muscle Nerve. 2014;49(3):431–8. DOI: 10.1002/mus.23942
Schreiber-Katz O, Klug C, Thiele S, Schorling E, Zowe J, Reilich P, et al. Comparative cost of illness analysis and assessment of health care burden of Duchenne and Becker muscular dystrophies in Germany. Orphanet J Rare Dis. 2014;9:210. DOI: 10.1186/s13023-014-0210-9
Lowes LP, Alfano LN, Arnold WD, Shell R, Prior TW, McColly M, et al. Impact of age and motor function in a phase 1/2A study of infants with SMA type 1 receiving single-dose gene replacement therapy. Pediatr Neurol. 2019;98:39–45. DOI: 10.1016/j.pediatrneurol.2019.05.005
Kariyawasam DST, Russell JS, Wiley V, Alexander IE, Farrar MA. The implementation of newborn screening for spinal muscular atrophy: the Australian experience. Genet Med. 2020;22(3):557–65. DOI: 10.1038/s41436-019-0673-0
Vill K, Kolbel H, Schwartz O, Blaschek A, Olgemoller B, Harms E, et al. One year of newborn screening for SMA—results of a German pilot project. J Neuromuscular Dis. 2019;6(4):503–15. DOI: 10.3233/JND-190428
Landfeldt E, Alfredsson L, Straub V, Lochmuller H, Bushby K, Lindgren P. Economic evaluation in Duchenne muscular dystrophy: model frameworks for cost-effectiveness analysis. PharmacoEconomics. 2017;35(2):249–58. DOI: 10.1007/s40273-016-0461-5
Schuller Y, Hollak CE, Biegstraaten M. The quality of economic evaluations of ultra-orphan drugs in Europe—a systematic review. Orphanet J Rare Dis. 2015;10:92. DOI: 10.1186/s13023-015-0305-y
Garrison LP, Jackson T, Paul D, Kenston M. Value-based pricing for emerging gene therapies: the economic case for a higher cost-effectiveness threshold. J Manag Care Spec Pharm. 2019;24:1–7.
Jena A, Lakdawalla D. Value frameworks for rare diseases: Should they be different 2017. https://www.healthaffairs.org/do/10.1377/hblog20170412.059563/full/.
López-Bastida J, Ramos-Goñi JM, Aranda-Reneo I, Trapero-Bertran M, Kanavos P, Rodriguez MB. Using a stated preference discrete choice experiment to assess societal value from the perspective of decision-makers in Europe. Does it work for rare diseases? Health Policy (Amsterdam, Netherlands). 2019;123(2):152–8. DOI: 10.1016/j.healthpol.2018.11.015
López-Bastida J, Ramos-Goñi JM, Aranda-Reneo I, Taruscio D, Magrelli A, Kanavos P. Using a stated preference discrete choice experiment to assess societal value from the perspective of patients with rare diseases in Italy. Orphanet J Rare Dis. 2019;14(1):154. DOI: 10.1186/s13023-019-1126-1
Sassi F, Archard L, McDaid D. Searching literature databases for health care economic evaluations: how systematic can we afford to be? Med Care. 2002;40(5):387–94. DOI: 10.1097/00005650-200205000-00004
Fleurence RL, Spackman DE, Hollenbeak C. Does the funding source influence the results in economic evaluations? A case study in bisphosphonates for the treatment of osteoporosis. PharmacoEconomics. 2010;28(4):295–306. DOI: 10.2165/11530530-000000000-00000
Lopez-Bastida J, Pena-Longobardo LM, Aranda-Reneo I, Tizzano E, Sefton M, Oliva-Moreno J. Social/economic costs and health-related quality of life in patients with spinal muscular atrophy (SMA) in Spain. Orphanet J Rare Dis. 2017;12(1):141. DOI: 10.1186/s13023-017-0695-0
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.