Inoue, Y.; Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
Kaner, R. J.; Pulmonary and Critical Care Medicine, Genetic Medicine, Weill Cornell Medicine College, New York, NY, United States
Guiot, Julien ; Université de Liège - ULiège > Département de pharmacie > Département de pharmacie
Maher, T. M.; NIHR Respiratory Clinical Research Facility, Royal Brompton Hospital, and Fibrosis Research Group, National Heart and Lung Institute, Imperial College, London, England, United Kingdom
Tomassetti, S.; Department of Diseases of the Thorax, Ospedale GB Morgagni, Forlì, Italy
Moiseev, S.; Tareev Clinic of Internal Diseases, Sechenov First Moscow State Medical University, Moscow, Russian Federation
Kuwana, M.; Department of Allergy and Rheumatology, Nippon Medical School, Tokyo, Japan
Brown, K. K.; Department of Medicine, National Jewish Health, Denver, CO, United States
Language :
English
Title :
Diagnostic and Prognostic Biomarkers for Chronic Fibrosing Interstitial Lung Diseases With a Progressive Phenotype
Sgalla, G., Iovene, B., Calvello, M., Ori, M., Varone, F., Richeldi, L., Idiopathic pulmonary fibrosis: pathogenesis and management. Respir Res, 19(1), 2018, 32.
Cottin, V., Hirani, N.A., Hotchkin, D.L., et al. Presentation, diagnosis and clinical course of the spectrum of progressive-fibrosing interstitial lung diseases. Eur Respir Rev, 27(150), 2018, 180076.
Raghu, G., Collard, H.R., Egan, J.J., et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183:6 (2011), 788–824.
Travis, W.D., Costabel, U., Hansell, D.M., et al. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 188:6 (2013), 733–748.
Flaherty, K.R., Wells, A.U., Cottin, V., et al. Nintedanib in progressive fibrosing interstitial lung diseases. N Engl J Med 381:18 (2019), 1718–1727.
Maher, T.M., Corte, T.J., Fischer, A., et al. Pirfenidone in patients with unclassifiable progressive fibrosing interstitial lung disease: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir Med 8:2 (2020), 147–157.
Maher, T.M., Stowasser, S., Nishioka, Y., et al. Biomarkers of extracellular matrix turnover in patients with idiopathic pulmonary fibrosis given nintedanib (INMARK study): a randomised, placebo-controlled study. Lancet Respir Med 7:9 (2019), 771–779.
Strimbu, K., Tavel, J.A., What are biomarkers?. Curr Opin HIV AIDS 5:6 (2010), 463–466.
Guiot, J., Moermans, C., Henket, M., Corhay, J.L., Louis, R., Blood biomarkers in idiopathic pulmonary fibrosis. Lung 195:3 (2017), 273–280.
Maher, T.M., Precision medicine in idiopathic pulmonary fibrosis. QJM 109:9 (2016), 585–587.
Wu, A.C., Kiley, J.P., Noel, P.J., et al. Current status and future opportunities in lung precision medicine research with a focus on biomarkers: an American Thoracic Society/National Heart, Lung, and Blood Institute Research statement. Am J Respir Crit Care Med 198:12 (2018), e116–e136.
Campo, I., Zorzetto, M., Bonella, F., Facts and promises on lung biomarkers in interstitial lung diseases. Expert Rev Respir Med 9:4 (2015), 437–457.
Kasper, M., Barth, K., Potential contribution of alveolar epithelial type I cells to pulmonary fibrosis. Biosci Rep, 37(6), 2017 BSR20171301.
Ishikawa, N., Hattori, N., Yokoyama, A., Kohno, N., Utility of KL-6/MUC1 in the clinical management of interstitial lung diseases. Respir Investig 50:1 (2012), 3–13.
Hirasawa, Y., Kohno, N., Yokoyama, A., Inoue, Y., Abe, M., Hiwada, K., KL-6, a human MUC1 mucin, is chemotactic for human fibroblasts. Am J Respir Cell Mol Biol 17:4 (1997), 501–507.
Ridley, C., Thornton, D.J., Mucins: the frontline defence of the lung. Biochem Soc Trans 46:5 (2018), 1099–1106.
Sand, J.M., Larsen, L., Hogaboam, C., et al. MMP mediated degradation of type IV collagen alpha 1 and alpha 3 chains reflects basement membrane remodeling in experimental and clinical fibrosis: validation of two novel biomarker assays. PLoS One, 8(12), 2013, e84934.
Barry-Hamilton, V., Spangler, R., Marshall, D., et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med 16:9 (2010), 1009–1017.
Todd, N.W., Luzina, I.G., Atamas, S.P., Molecular and cellular mechanisms of pulmonary fibrosis. Fibrogenesis Tissue Repair, 5(1), 2012, 11.
Clemmons, D.R., IGF binding proteins and their functions. Mol Reprod Dev 35:4 (1993), 368–374.
Murray, L.A., Habiel, D.M., Hohmann, M., et al. Antifibrotic role of vascular endothelial growth factor in pulmonary fibrosis. JCI Insight, 2(16), 2017, e92192.
Okamoto, M., Hoshino, T., Kitasato, Y., et al. Periostin, a matrix protein, is a novel biomarker for idiopathic interstitial pneumonias. Eur Respir J 37:5 (2011), 1119–1127.
Prasse, A., Pechkovsky, D.V., Toews, G.B., et al. A vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18. Am J Respir Crit Care Med 173:7 (2006), 781–792.
Peljto, A.L., Zhang, Y., Fingerlin, T.E., et al. Association between the MUC5B promoter polymorphism and survival in patients with idiopathic pulmonary fibrosis. JAMA 309:21 (2013), 2232–2239.
Spagnolo, P., Tzouvelekis, A., Maher, T.M., Personalized medicine in idiopathic pulmonary fibrosis: facts and promises. Curr Opin Pulm Med 21:5 (2015), 470–478.
Hunninghake, G.M., Hatabu, H., Okajima, Y., et al. MUC5B promoter polymorphism and interstitial lung abnormalities. N Engl J Med 368:23 (2013), 2192–2200.
Fingerlin, T.E., Murphy, E., Zhang, W., et al. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nat Genet 45:6 (2013), 613–620.
Moore, C., Blumhagen, R.Z., Yang, I.V., et al. Resequencing study confirms that host defense and cell senescence gene variants contribute to the risk of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 200:2 (2019), 199–208.
Noth, I., Zhang, Y., Ma, S.F., et al. Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study. Lancet Respir Med 1:4 (2013), 309–317.
Zhang, H.P., Zou, J., Xie, P., Gao, F., Mu, H.J., Association of HLA and cytokine gene polymorphisms with idiopathic pulmonary fibrosis. Kaohsiung J Med Sci 31:12 (2015), 613–620.
Juge, P.A., Lee, J.S., Ebstein, E., et al. MUC5B promoter variant and rheumatoid arthritis with interstitial lung disease. N Engl J Med 379:23 (2018), 2209–2219.
Grunewald, J., Eklund, A., Olerup, O., Human leukocyte antigen class I alleles and the disease course in sarcoidosis patients. Am J Respir Crit Care Med 169:6 (2004), 696–702.
Spagnolo, P., Grunewald, J., Recent advances in the genetics of sarcoidosis. J Med Genet 50:5 (2013), 290–297.
Odani, T., Yasuda, S., Ota, Y., et al. Up-regulated expression of HLA-DRB5 transcripts and high frequency of the HLA-DRB5∗01:05 allele in scleroderma patients with interstitial lung disease. Rheumatology (Oxford) 51:10 (2012), 1765–1774.
Bonella, F., Costabel, U., Biomarkers in connective tissue disease-associated interstitial lung disease. Semin Respir Crit Care Med 35:2 (2014), 181–200.
Migita, K., Nakamura, T., Koga, T., Eguchi, K., HLA-DRB1 alleles and rheumatoid arthritis-related pulmonary fibrosis. J Rheumatol 37:1 (2010), 205–207.
Zhu, L., Wang, L., Luo, X., et al. Tollip, an intracellular trafficking protein, is a novel modulator of the transforming growth factor-beta signaling pathway. J Biol Chem 287:47 (2012), 39653–39663.
Stock, C.J., Sato, H., Fonseca, C., et al. Mucin 5B promoter polymorphism is associated with idiopathic pulmonary fibrosis but not with development of lung fibrosis in systemic sclerosis or sarcoidosis. Thorax 68:5 (2013), 436–441.
Ahmadzai, H., Loke, W.S.J., Huang, S., Herbert, C., Wakefield, D., Thomas, P., Biomarkers in sarcoidosis: a review. Curr Biomark Find 4 (2014), 93–106.
Maldonado, M., Buendia-Roldán, I., Vicens-Zygmunt, V., et al. Identification of MMP28 as a biomarker for the differential diagnosis of idiopathic pulmonary fibrosis. PLoS One, 13(9), 2018, e0203779.
Tzouvelekis, A., Herazo-Maya, J.D., Slade, M., et al. Validation of the prognostic value of MMP-7 in idiopathic pulmonary fibrosis. Respirology 22:3 (2017), 486–493.
Vukmirovic, M., Kaminski, N., Impact of transcriptomics on our understanding of pulmonary fibrosis. Front Med (Lausanne), 5, 2018, 87.
Guiot, J., Bondue, B., Henket, M., Corhay, J.L., Louis, R., Raised serum levels of IGFBP-1 and IGFBP-2 in idiopathic pulmonary fibrosis. BMC Pulm Med, 16(1), 2016, 86.
Guiot, J., Henket, M., Corhay, J.L., Moermans, C., Louis, R., Sputum biomarkers in IPF: evidence for raised gene expression and protein level of IGFBP-2, IL-8 and MMP-7. PLoS One, 12(2), 2017, e0171344.
Ando, M., Miyazaki, E., Ito, T., et al. Significance of serum vascular endothelial growth factor level in patients with idiopathic pulmonary fibrosis. Lung 188:3 (2010), 247–252.
Meyer, K.C., Cardoni, A., Xiang, Z.Z., Vascular endothelial growth factor in bronchoalveolar lavage from normal subjects and patients with diffuse parenchymal lung disease. J Lab Clin Med 135:4 (2000), 332–338.
Liu, R.M., Oxidative stress, plasminogen activator inhibitor 1, and lung fibrosis. Antioxid Redox Signal 10:2 (2008), 303–319.
Hara, A., Sakamoto, N., Ishimatsu, Y., et al. S100A9 in BALF is a candidate biomarker of idiopathic pulmonary fibrosis. Respir Med 106:4 (2012), 571–580.
Kohno, N., Awaya, Y., Oyama, T., et al. KL-6, a mucin-like glycoprotein, in bronchoalveolar lavage fluid from patients with interstitial lung disease. Am Rev Respir Dis 148:3 (1993), 637–642.
Mimori, T., Nakashima, R., Hosono, Y., Interstitial lung disease in myositis: clinical subsets, biomarkers, and treatment. Curr Rheumatol Rep 14:3 (2012), 264–274.
Janssen, R., Sato, H., Grutters, J.C., et al. Study of Clara cell 16, KL-6, and surfactant protein-D in serum as disease markers in pulmonary sarcoidosis. Chest 124:6 (2003), 2119–2125.
Xue, C., Wu, N., Li, X., Qiu, M., Du, X., Ye, Q., Serum concentrations of Krebs von den Lungen-6, surfactant protein D, and matrix metalloproteinase-2 as diagnostic biomarkers in patients with asbestosis and silicosis: a case-control study. BMC Pulm Med, 17(1), 2017, 144.
Yamakawa, H., Hagiwara, E., Ikeda, S., et al. Evaluation of changes in the serum levels of Krebs von den Lungen-6 and surfactant protein-D over time as important biomarkers in idiopathic fibrotic nonspecific interstitial pneumonia. Respir Investig 57:5 (2019), 422–429.
Okamoto, T., Fujii, M., Furusawa, H., Tsuchiya, K., Miyazaki, Y., Inase, N., The usefulness of KL-6 and SP-D for the diagnosis and management of chronic hypersensitivity pneumonitis. Respir Med 109:12 (2015), 1576–1581.
Petrek, M., Hermans, C., Kolek, V., Fialová, J., Bernard, A., Clara cell protein (CC16) in serum and bronchoalveolar lavage fluid of subjects exposed to asbestos. Biomarkers 7:1 (2002), 58–67.
Kucejko, W., Chyczewska, E., Naumnik, W., Ossolińska, M., Concentration of surfactant protein D, Clara cell protein CC-16 and IL-10 in bronchoalveolar lavage (BAL) in patients with sarcoidosis, hypersensivity pneumonitis and idiopathic pulmonary fibrosis. Folia Histochem Cytobiol 47:2 (2009), 225–230.
Hasegawa, M., Fujimoto, M., Hamaguchi, Y., et al. Use of serum clara cell 16-kDa (CC16) levels as a potential indicator of active pulmonary fibrosis in systemic sclerosis. J Rheumatol 38:5 (2011), 877–884.
Moinzadeh, P., Krieg, T., Hellmich, M., et al. Elevated MMP-7 levels in patients with systemic sclerosis: correlation with pulmonary involvement. Exp Dermatol 20:9 (2011), 770–773.
Vuorinen, K., Myllärniemi, M., Lammi, L., et al. Elevated matrilysin levels in bronchoalveolar lavage fluid do not distinguish idiopathic pulmonary fibrosis from other interstitial lung diseases. APMIS 115:8 (2007), 969–975.
Fischer, A., Strek, M.E., Cottin, V., et al. Proceedings of the American College of Rheumatology/Association of Physicians of Great Britain and Ireland Connective Tissue Disease-Associated Interstitial Lung Disease Summit: a multidisciplinary approach to address challenges and opportunities. Arthritis Rheumatol 71:2 (2019), 182–195.
Chen, J., Doyle, T.J., Liu, Y., et al. Biomarkers of rheumatoid arthritis-associated interstitial lung disease. Arthritis Rheumatol 67:1 (2015), 28–38.
Suga, M., Iyonaga, K., Okamoto, T., et al. Characteristic elevation of matrix metalloproteinase activity in idiopathic interstitial pneumonias. Am J Respir Crit Care Med 162:5 (2000), 1949–1956.
White, E.S., Xia, M., Murray, S., et al. Plasma surfactant protein-D, matrix metalloproteinase-7, and osteopontin index distinguishes idiopathic pulmonary fibrosis from other idiopathic interstitial pneumonias. Am J Respir Crit Care Med 194:10 (2016), 1242–1251.
Crouser, E.D., Culver, D.A., Knox, K.S., et al. Gene expression profiling identifies MMP-12 and ADAMDEC1 as potential pathogenic mediators of pulmonary sarcoidosis. Am J Respir Crit Care Med 179:10 (2009), 929–938.
Günther, J., Kill, A., Becker, M.O., et al. Angiotensin receptor type 1 and endothelin receptor type A on immune cells mediate migration and the expression of IL-8 and CCL18 when stimulated by autoantibodies from systemic sclerosis patients. Arthritis Res Ther, 16(2), 2014, R65.
Schmidt, K., Martinez-Gamboa, L., Meier, S., et al. Bronchoalveoloar lavage fluid cytokines and chemokines as markers and predictors for the outcome of interstitial lung disease in systemic sclerosis patients. Arthritis Res Ther, 11(4), 2009, R111.
Rademacher, J., Kill, A., Mattat, K., et al. Monocytic angiotensin and endothelin receptor imbalance modulate secretion of the profibrotic chemokine ligand 18. J Rheumatol 43:3 (2016), 587–591.
Antonelli, A., Ferri, C., Fallahi, P., et al. CXCL10 (alpha) and CCL2 (beta) chemokines in systemic sclerosis: a longitudinal study. Rheumatology (Oxford) 47:1 (2008), 45–49.
Hasegawa, M., Biomarkers in systemic sclerosis: their potential to predict clinical courses. J Dermatol 43:1 (2016), 29–38.
Boot, R.G., Hollak, C.E., Verhoek, M., Alberts, C., Jonkers, R.E., Aerts, J.M., Plasma chitotriosidase and CCL18 as surrogate markers for granulomatous macrophages in sarcoidosis. Clin Chim Acta 411:1-2 (2010), 31–36.
Bennett, D., Salvini, M., Fui, A., et al. Calgranulin B and KL-6 in bronchoalveolar lavage of patients with IPF and NSIP. Inflammation 42:2 (2019), 463–470.
van Bon, L., Cossu, M., Loof, A., et al. Proteomic analysis of plasma identifies the Toll-like receptor agonists S100A8/A9 as a novel possible marker for systemic sclerosis phenotype. Ann Rheum Dis 73:8 (2014), 1585–1589.
Tanaka, T., Narazaki, M., Kishimoto, T., IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol, 6(10), 2014, a016295.
Ramos-Casals, M., Retamozo, S., Sisó-Almirall, A., Pérez-Alvarez, R., Pallarés, L., Brito-Zeron, P., Clinically-useful serum biomarkers for diagnosis and prognosis of sarcoidosis. Expert Rev Clin Immunol 15:4 (2019), 391–405.
Hamano, Y., Kida, H., Ihara, S., et al. Classification of idiopathic interstitial pneumonias using anti-myxovirus resistance-protein 1 autoantibody. Sci Rep, 7, 2017, 43201.
Moeller, A., Gilpin, S.E., Ask, K., et al. Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 179:7 (2009), 588–594.
Lee, J.S., Lee, E.Y., Ha, Y.J., Kang, E.H., Lee, Y.J., Song, Y.W., Serum KL-6 levels reflect the severity of interstitial lung disease associated with connective tissue disease. Arthritis Res Ther, 21(1), 2019, 58.
Just, S.A., Lindegaard, H., Hejbøl, E.K., et al. Fibrocyte measurement in peripheral blood correlates with number of cultured mature fibrocytes in vitro and is a potential biomarker for interstitial lung disease in rheumatoid arthritis. Respir Res, 18(1), 2017, 141.
Magro, C.M., Ross, P., Marsh, C.B., et al. The role of anti-endothelial cell antibody-mediated microvascular injury in the evolution of pulmonary fibrosis in the setting of collagen vascular disease. Am J Clin Pathol 127:2 (2007), 237–247.
Hamai, K., Iwamoto, H., Ishikawa, N., et al. Comparative study of circulating MMP-7, CCL18, KL-6, SP-A, and SP-D as disease markers of idiopathic pulmonary fibrosis. Dis Markers, 2016, 2016, 4759040.
Jiang, Y., Luo, Q., Han, Q., et al. Sequential changes of serum KL-6 predict the progression of interstitial lung disease. J Thorac Dis 10:8 (2018), 4705–4714.
Wakamatsu, K., Nagata, N., Kumazoe, H., et al. Prognostic value of serial serum KL-6 measurements in patients with idiopathic pulmonary fibrosis. Respir Investig 55:1 (2017), 16–23.
Song, J.W., Do, K.H., Jang, S.J., Colby, T.V., Han, S., Kim, D.S., Blood biomarkers MMP-7 and SP-A: predictors of outcome in idiopathic pulmonary fibrosis. Chest 143:5 (2013), 1422–1429.
Richards, T.J., Kaminski, N., Baribaud, F., et al. Peripheral blood proteins predict mortality in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 185:1 (2012), 67–76.
Chiba, H., Otsuka, M., Takahashi, H., Significance of molecular biomarkers in idiopathic pulmonary fibrosis: a mini review. Respir Investig 56:5 (2018), 384–391.
Raghu, G., Richeldi, L., Jagerschmidt, A., et al. Idiopathic pulmonary fibrosis: prospective, case-controlled study of natural history and circulating biomarkers. Chest 154:6 (2018), 1359–1370.
Wang, K., Ju, Q., Cao, J., Tang, W., Zhang, J., Impact of serum SP-A and SP-D levels on comparison and prognosis of idiopathic pulmonary fibrosis: a systematic review and meta-analysis. Medicine (Baltimore), 96(23), 2017, e7083.
Korthagen, N.M., van Moorsel, C.H., Barlo, N.P., et al. Serum and BALF YKL-40 levels are predictors of survival in idiopathic pulmonary fibrosis. Respir Med 105:1 (2011), 106–113.
Oldham, J.M., Ma, S.F., Martinez, F.J., et al. TOLLIP, MUC5B, and the response to n-acetylcysteine among individuals with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 192:12 (2015), 1475–1482.
Inchingolo, R., Varone, F., Sgalla, G., Richeldi, L., Existing and emerging biomarkers for disease progression in idiopathic pulmonary fibrosis. Expert Rev Respir Med 13:1 (2019), 39–51.
Stuart, B.D., Lee, J.S., Kozlitina, J., et al. Effect of telomere length on survival in patients with idiopathic pulmonary fibrosis: an observational cohort study with independent validation. Lancet Respir Med 2:7 (2014), 557–565.
Snetselaar, R., van Batenburg, A.A., van Oosterhout, M.F.M., et al. Short telomere length in IPF lung associates with fibrotic lesions and predicts survival. PLoS One, 12(12), 2017, e0189467.
Maher, T.M., Oballa, E., Simpson, J.K., et al. An epithelial biomarker signature for idiopathic pulmonary fibrosis: an analysis from the multicentre PROFILE cohort study. Lancet Respir Med 5:12 (2017), 946–955.
Estany, S., Vicens-Zygmunt, V., Llatjós, R., et al. Lung fibrotic tenascin-C upregulation is associated with other extracellular matrix proteins and induced by TGFβ1. BMC Pulm Med, 14, 2014, 120.
Prasse, A., Probst, C., Bargagli, E., et al. Serum CC-chemokine ligand 18 concentration predicts outcome in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 179:8 (2009), 717–723.
Neighbors, M., Cabanski, C.R., Ramalingam, T.R., et al. Prognostic and predictive biomarkers for patients with idiopathic pulmonary fibrosis treated with pirfenidone: post-hoc assessment of the CAPACITY and ASCEND trials. Lancet Respir Med 6:8 (2018), 615–626.
De Lauretis, A., Sestini, P., Pantelidis, P., et al. Serum interleukin 6 is predictive of early functional decline and mortality in interstitial lung disease associated with systemic sclerosis. J Rheumatol 40:4 (2013), 435–446.
Fathi, M., Barbasso Helmers, S., Lundberg, I.E., KL-6: a serological biomarker for interstitial lung disease in patients with polymyositis and dermatomyositis. J Intern Med 271:6 (2012), 589–597.
Lee, Y.S., Kim, H.C., Lee, B.Y., et al. The value of biomarkers as predictors of outcome in patients with rheumatoid arthritis-associated usual interstitial pneumonia. Sarcoidosis Vasc Diffuse Lung Dis 33:3 (2016), 216–223.
Winstone, T.A., Assayag, D., Wilcox, P.G., et al. Predictors of mortality and progression in scleroderma-associated interstitial lung disease: a systematic review. Chest 146:2 (2014), 422–436.
Yanaba, K., Hasegawa, M., Hamaguchi, Y., Fujimoto, M., Takehara, K., Sato, S., Longitudinal analysis of serum KL-6 levels in patients with systemic sclerosis: association with the activity of pulmonary fibrosis. Clin Exp Rheumatol 21:4 (2003), 429–436.
Kumánovics, G., Minier, T., Radics, J., Pálinkás, L., Berki, T., Czirják, L., Comprehensive investigation of novel serum markers of pulmonary fibrosis associated with systemic sclerosis and dermato/polymyositis. Clin Exp Rheumatol 26:3 (2008), 414–420.
Kumánovics, G., Görbe, E., Minier, T., Simon, D., Berki, T., Czirják, L., Follow-up of serum KL-6 lung fibrosis biomarker levels in 173 patients with systemic sclerosis. Clin Exp Rheumatol, 32(6 suppl 86), 2014 S-138-S-144.
Kuwana, M., Shirai, Y., Takeuchi, T., Elevated serum Krebs von den Lungen-6 in early disease predicts subsequent deterioration of pulmonary function in patients with systemic sclerosis and interstitial lung disease. J Rheumatol 43:10 (2016), 1825–1831.
Khanna, D., Tashkin, D.P., Denton, C.P., Renzoni, E.A., Desai, S.R., Varga, J., Aetiology, risk factors, and biomarkers in systemic sclerosis with interstitial lung disease. Am J Respir Crit Care Med 201:6 (2020), 650–660.
Hant, F.N., Ludwicka-Bradley, A., Wang, H.J., et al. Surfactant protein D and KL-6 as serum biomarkers of interstitial lung disease in patients with scleroderma. J Rheumatol 36:4 (2009), 773–780.
Yanaba, K., Hasegawa, M., Takehara, K., Sato, S., Comparative study of serum surfactant protein-D and KL-6 concentrations in patients with systemic sclerosis as markers for monitoring the activity of pulmonary fibrosis. J Rheumatol 31:6 (2004), 1112–1120.
Bonella, F., Volpe, A., Caramaschi, P., et al. Surfactant protein D and KL-6 serum levels in systemic sclerosis: correlation with lung and systemic involvement. Sarcoidosis Vasc Diffuse Lung Dis 28:1 (2011), 27–33.
Yamane, K., Ihn, H., Kubo, M., et al. Serum levels of KL-6 as a useful marker for evaluating pulmonary fibrosis in patients with systemic sclerosis. J Rheumatol 27:4 (2000), 930–934.
Elhaj, M., Charles, J., Pedroza, C., et al. Can serum surfactant protein D or CC-chemokine ligand 18 predict outcome of interstitial lung disease in patients with early systemic sclerosis?. J Rheumatol 40:7 (2013), 1114–1120.
Nordenbaek, C., Johansen, J.S., Halberg, P., et al. High serum levels of YKL-40 in patients with systemic sclerosis are associated with pulmonary involvement. Scand J Rheumatol 34:4 (2005), 293–297.
Long, X., He, X., Ohshimo, S., et al. Serum YKL-40 as predictor of outcome in hypersensitivity pneumonitis. Eur Respir J, 49(2), 2017, 1501924.
Hozumi, H., Fujisawa, T., Enomoto, N., et al. Clinical utility of YKL-40 in polymyositis/dermatomyositis-associated interstitial lung disease. J Rheumatol 44:9 (2017), 1394–1401.
Johansen, J.S., Milman, N., Hansen, M., Garbarsch, C., Price, P.A., Graudal, N., Increased serum YKL-40 in patients with pulmonary sarcoidosis: a potential marker of disease activity?. Respir Med 99:4 (2005), 396–402.
Alqalyoobi, S., Adegunsoye, A., Linderholm, A., et al. Circulating plasma biomarkers of progressive interstitial lung disease. Am J Respir Crit Care Med 201:2 (2020), 250–253.
Manetti, M., Guiducci, S., Romano, E., et al. Increased serum levels and tissue expression of matrix metalloproteinase-12 in patients with systemic sclerosis: correlation with severity of skin and pulmonary fibrosis and vascular damage. Ann Rheum Dis 71:6 (2012), 1064–1072.
Kikuchi, K., Kubo, M., Sato, S., Fujimoto, M., Tamaki, K., Serum tissue inhibitor of metalloproteinases in patients with systemic sclerosis. J Am Acad Dermatol 33:6 (1995), 973–978.
Bhattacharyya, S., Wang, W., Morales-Nebreda, L., et al. Tenascin-C drives persistence of organ fibrosis. Nat Commun, 7, 2016, 11703.
Fujita, H., Sakamoto, N., Ishimatsu, Y., et al. Elevated tenascin-C levels in bronchoalveolar lavage fluid of patients with sarcoidosis. Lung 190:5 (2012), 537–543.
De Luca, G., Bosello, S.L., Berardi, G., et al. Tumour-associated antigens in systemic sclerosis patients with interstitial lung disease: association with lung involvement and cancer risk. Rheumatology (Oxford) 54:11 (2015), 1991–1999.
Sargin, G., Köse, R., Şentürk, T., Tumor-associated antigens in rheumatoid arthritis interstitial lung disease or malignancy?. Arch Rheumatol 33:4 (2018), 431–437.
Xu, F., Cui, W., Wei, Y., Dong, J., Liu, B., Association of serum tumor markers with interstitial lung disease in patients with or without connective tissue disease: a cross-sectional study. Tradit Med Mod Med 1:2 (2018), 145–151.
Hoffmann-Vold, A.M., Tennøe, A.H., Garen, T., et al. High level of chemokine CCL18 is associated with pulmonary function deterioration, lung fibrosis progression, and reduced survival in systemic sclerosis. Chest 150:2 (2016), 299–306.
Schupp, J., Becker, M., Günther, J., Müller-Quernheim, J., Riemekasten, G., Prasse, A., Serum CCL18 is predictive for lung disease progression and mortality in systemic sclerosis. Eur Respir J 43:5 (2014), 1530–1532.
Cai, M., Bonella, F., He, X., et al. CCL18 in serum, BAL fluid and alveolar macrophage culture supernatant in interstitial lung diseases. Respir Med 107:9 (2013), 1444–1452.
Elhai, M., Hoffmann-Vold, A.M., Avouac, J., et al. Performance of candidate serum biomarkers for systemic sclerosis-associated interstitial lung disease. Arthritis Rheumatol 71:6 (2019), 972–982.
Khanna, D., Denton, C.P., Jahreis, A., et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial. Lancet 387:10038 (2016), 2630–2640.
Gochuico, B.R., Avila, N.A., Chow, C.K., et al. Progressive preclinical interstitial lung disease in rheumatoid arthritis. Arch Intern Med 168:2 (2008), 159–166.
Jenkins, R.G., Simpson, J.K., Saini, G., et al. Longitudinal change in collagen degradation biomarkers in idiopathic pulmonary fibrosis: an analysis from the prospective, multicentre PROFILE study. Lancet Respir Med 3:6 (2015), 462–472.
Gilead Sciences, Inc. Gilead terminates phase 2 study of simtuzumab in patients with idiopathic pulmonary fibrosis. http://www.gilead.com/news/press-releases/2016/1/gilead-terminates-phase-2-study-of-simtuzumab-in-patients-with-idiopathic-pulmonary-fibrosis. (Accessed 16 May 2018)
Kahloon, R.A., Xue, J., Bhargava, A., et al. Patients with idiopathic pulmonary fibrosis with antibodies to heat shock protein 70 have poor prognoses. Am J Respir Crit Care Med 187:7 (2013), 768–775.
Herazo-Maya, J.D., Noth, I., Duncan, S.R., et al. Peripheral blood mononuclear cell gene expression profiles predict poor outcome in idiopathic pulmonary fibrosis. Sci Transl Med, 5(205), 2013 205ra136.
Herazo-Maya, J.D., Sun, J., Molyneaux, P.L., et al. Validation of a 52-gene risk profile for outcome prediction in patients with idiopathic pulmonary fibrosis: an international, multicentre, cohort study. Lancet Respir Med 5:11 (2017), 857–868.
van Bon, L., Affandi, A.J., Broen, J., et al. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N Engl J Med 370:5 (2014), 433–443.
Volkmann, E.R., Tashkin, D.P., Roth, M.D., et al. Changes in plasma CXCL4 levels are associated with improvements in lung function in patients receiving immunosuppressive therapy for systemic sclerosis-related interstitial lung disease. Arthritis Res Ther, 18(1), 2016, 305.
Su, R., Nguyen, M.L., Agarwal, M.R., et al. Interferon-inducible chemokines reflect severity and progression in sarcoidosis. Respir Res, 14(1), 2013, 121.
Hoffmann-Vold, A.M., Weigt, S.S., Palchevskiy, V., et al. Augmented concentrations of CX3CL1 are associated with interstitial lung disease in systemic sclerosis. PLoS One, 13(11), 2018, e0206545.
Newton, C.A., Oldham, J.M., Ley, B., et al. Telomere length and genetic variant associations with interstitial lung disease progression and survival. Eur Respir J, 53(4), 2019, 1801641.
Doyle, T.J., Patel, A.S., Hatabu, H., et al. Detection of rheumatoid arthritis-interstitial lung disease is enhanced by serum biomarkers. Am J Respir Crit Care Med 191:12 (2015), 1403–1412.
Leuschner, G., Behr, J., Acute exacerbation in interstitial lung disease. Front Med (Lausanne), 4, 2017, 176.
Okuda, R., Hagiwara, E., Baba, T., Kitamura, H., Kato, T., Ogura, T., Safety and efficacy of pirfenidone in idiopathic pulmonary fibrosis in clinical practice. Respir Med 107:9 (2013), 1431–1437.
Azuma, A., Nukiwa, T., Tsuboi, E., et al. Double-blind, placebo-controlled trial of pirfenidone in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 171:9 (2005), 1040–1047.
Guiot, J., Struman, I., Chavez, V., et al. Altered epigenetic features in circulating nucleosomes in idiopathic pulmonary fibrosis. Clin Epigenetics, 9, 2017, 84.
Tyndall, A., Ladner, U.M., Matucci-Cerinic, M., The EULAR Scleroderma Trials and Research Group (EUSTAR): an international framework for accelerating scleroderma research. Curr Opin Rheumatol 20:6 (2008), 703–706.
Todd, J.L., Neely, M.L., Overton, R., et al. Peripheral blood proteomic profiling of idiopathic pulmonary fibrosis biomarkers in the multicentre IPF-PRO Registry. Respir Res, 20(1), 2019, 227.
Summit rAI. Paper presented at: 3rd Annual IPF Summit; August 27-29, 2019; San Diego, CA.
Hoffmann-Vold, A.M., Weigt, S.S., Saggar, R., et al. Endotype-phenotyping may predict a treatment response in progressive fibrosing interstitial lung disease. EBioMedicine 50 (2019), 379–386.
Ryu, C., Sun, H., Gulati, M., et al. Extracellular mitochondrial DNA is generated by fibroblasts and predicts death in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 196:12 (2017), 1571–1581.