Asimow, P. D., Hirschmann, M. M., & Stolper, E. M. (2001). Calculation of peridotite partial melting from thermodynamic models of minerals and melts, IV. Adiabatic decompression and the composition and mean properties of mid-ocean ridge basalts. Journal of Petrology, 42(5), 963–998. https://doi.org/10.1093/petrology/42.5.963
Baratoux, D., Samuel, H., Michaut, C., Toplis, M. J., Monnereau, M., Wieczorek, M., Garcia, R., & Kurita, K. (2014). Petrological constraints on the density of the Martian crust. Journal of Geophysical Research: Planets, 119, 1707–1727. https://doi.org/10.1002/2014JE004642
Baratoux, D., Toplis, M. J., Monnereau, M., & Gasnault, O. (2011). Thermal history of Mars inferred from orbital geochemistry of volcanic provinces. Nature, 472(7343), 338–341. https://doi.org/10.1038/nature09903
Besserer, J., Nimmo, F., Wieczorek, M. A., Weber, R. C., Kiefer, W. S., McGovern, P. J., Andrews-Hanna, J. C., Smith, D. E., & Zuber, M. T. (2014). GRAIL gravity constraints on the vertical and lateral density structure of the lunar crust. Geophysical Research Letters, 41, 5771–5777. https://doi.org/10.1002/2014GL060240
Brown, S. M., & Elkins-Tanton, L. T. (2009). Compositions of Mercury's earliest crust from magma ocean models. Earth and Planetary Science Letters, 286(3-4), 446–455. https://doi.org/10.1016/j.epsl.2009.07.010
Byrne, P. K., Ostrach, L. R., Fassett, C. I., Chapman, C. R., Denevi, B. W., Evans, A. J., Klimczak, C., Banks, M. E., Head, J. W., & Solomon, S. C. (2016). Widespread effusive volcanism on Mercury likely ended by about 3.5 Ga. Geophysical Research Letters, 43, 7408–7416. https://doi.org/10.1002/2016GL069412
Charlier, B., Grove, T. L., & Zuber, M. T. (2013). Phase equilibria of ultramafic compositions on Mercury and the origin of the compositional dichotomy. Earth and Planetary Science Letters, 363, 50–60. https://doi.org/10.1016/j.epsl.2012.12.021
Denevi, B. W., Ernst, C. M., Meyer, H. M., Robinson, M. S., Murchie, S. L., Whitten, J. L., Head, J. W., Watters, T. R., Solomon, S. C., Ostrach, L. R., Chapman, C. R., Byrne, P. K., Klimczak, C., & Peplowski, P. N. (2013). The distribution and origin of smooth plains on Mercury. Journal of Geophysical Research: Planets, 118, 891–907. https://doi.org/10.1002/jgre.20075
Fassett, C. I., Head, J. W., Baker, D. M. H., Zuber, M. T., Smith, D. E., Neumann, G. A., Solomon, S. C., Klimczak, C., Strom, R. G., Chapman, C. R., Prockter, L. M., Phillips, R. J., Oberst, J., & Preusker, F. (2012). Large impact basins on Mercury: Global distribution, characteristics, and modification history from MESSENGER orbital data. Journal of Geophysical Research, 117, E00L08. https://doi.org/10.1029/2012JE004154
Frank, E. A., Potter, R. W. K., Abramov, O., James, P. B., Klima, R. L., Mojzsis, S. J., & Nittler, L. R.(2017). Evaluating an impact origin for Mercury's high-magnesium region. Journal of Geophysical Research: Planets, 122, 614–632. https://doi.org/10.1002/2016JE005244
Genova, A., Goossens, S., Mazarico, E., Lemoine, F. G., Neumann, G. A., Kuang, W., Sabaka, T. J., Hauck, S. A., Smith, D. E., Solomon, S. C., & Zuber, M. T. (2019). Geodetic evidence that Mercury has a solid inner core. Geophysical Research Letters, 46, 3625–3633. https://doi.org/10.1029/2018GL081135
Goossens, S., Sabaka, T. J., Genova, A., Mazarico, E., Nicholas, J. B., & Neumann, G. A. (2017). Evidence for a low bulk crustal density for Mars from gravity and topography. Geophysical Research Letters, 44, 7686–7694. https://doi.org/10.1002/2017GL074172
Han, S.-C., Schmerr, N., Neumann, G., & Holmes, S. (2014). Global characteristics of porosity and density stratification within the lunar crust from GRAIL gravity and Lunar Orbiter Laser Altimeter topography data. Geophysical Research Letters, 41, 1882–1889. https://doi.org/10.1002/2014GL059378
Hauck, S. A., Margot, J.-L., Solomon, S. C., Phillips, R. J., Johnson, C. L., Lemoine, F. G., Mazarico, E., McCoy, T. J., Padovan, S., Peale, S. J., Perry, M. E., Smith, D. E., & Zuber, M. T.(2013). The curious case of Mercury's internal structure. Journal of Geophysical Research: Planets, 118, 1204–1220. https://doi.org/10.1002/jgre.20091
Head, J. W., Chapman, C. R., Strom, R. G., Fassett, C. I., Denevi, B. W., Blewett, D. T., Ernst, C. M., Watters, T. R., Solomon, S. C., Murchie, S. L., Prockter, L. M., Chabot, N. L., Gillis-Davis, J. J., Whitten, J. L., Goudge, T. A., Baker, D. M. H., Hurwitz, D. M., Ostrach, L. R., Xiao, Z., Merline, W. J., Kerber, L., Dickson, J. L., Oberst, J., Byrne, P. K., Klimczak, C., & Nittler, L. R.(2011). Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science, 333(6051), 1853. https://doi.org/10.1126/science.1211997
Head, J. W., Murchie, S. L., Prockter, L. M., Robinson, M. S., Solomon, S. C., Strom, R. G., Chapman, C. R., Watters, T. R., McClintock, W. E., Blewett, D. T., & Gillis-Davis, J. J. (2008). Volcanism on Mercury: Evidence from the first MESSENGER flyby. Science, 321(5885), 69. https://doi.org/10.1126/science.1159256
Herzberg, C., & Gazel, E. (2009). Petrological evidence for secular cooling in mantle plumes. Nature, 458(7238), 619–622. https://doi.org/10.1038/nature07857
Hirschmann, M. M. (2000). Mantle solidus: Experimental constraints and the effects of peridotite composition. Geochemistry, Geophysics, Geosystems, 1(10), 1042–26. https://doi.org/10.1029/2000GC000070
James, P. B., Goossens, S., & Mazarico, E. (2019). Crustal density estimation from line-of-sight accelerations at mercury, 50th Lunar and Planetary Science Conference, The Woodlands, Texas, USA, abstract 2458. https://www.hou.usra.edu/meetings/lpsc2019/pdf/2458.pdf
James, P. B., Zuber, M. T., Phillips, R. J., & Solomon, S. C. (2015). Support of long-wavelength topography on Mercury inferred from MESSENGER measurements of gravity and topography. Journal of Geophysical Research: Planets, 120, 287–310. https://doi.org/10.1002/2014JE004713
Katz, R. F., Spiegelman, M., & Langmuir, C. H. (2003). A new parameterization of hydrous mantle melting. Geochemistry, Geophysics, Geosystems, 4(9), 1073. https://doi.org/10.1029/2002GC000433
Kerr, A. C. (2014). Oceanic plateaus, (2nd ed.). In H. D. Holland, & K. K. Turekian (Eds.), Treatise on geochemistry (pp. 631–667). Oxford:Elsevier.
Klein, E. M., & Langmuir, C. H. (1987). Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research, 92(B8), 8089–8115. https://doi.org/10.1029/JB092iB08p08089
Konopliv, A. S., Park, R. S., & Ermakov, A. I. (2020). The Mercury gravity field, orientation, love number, and ephemeris from the MESSENGER radiometric tracking data. Icarus, 335, 113,386. https://doi.org/10.1016/j.icarus.2019.07.020
Malavergne, V., Toplis, M. J., Berthet, S., & Jones, J. (2010). Highly reducing conditions during core formation on Mercury: Implications for internal structure and the origin of a magnetic field. Icarus, 206(1), 199–209. https://doi.org/10.1016/j.icarus.2009.09.001
Marchi, S., Chapman, C. R., Fassett, C. I., Head, J. W., Bottke, W. F., & Strom, R. G. (2013). Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature, 499(7456), 59–61. https://doi.org/10.1038/nature12280
Margot, J.-L., Hauck, S. A. II., Mazarico, E., Padovan, S., & Peale, S. J. (2018). Mercury's internal structure. In S. C. Solomon, L. R. Nittler, & B. J. Anderson (Eds.), Mercury: The view after MESSENGER(pp. 85–113). Cambridge:Cambridge University Press. https://doi.org/10.1017/9781316650684.005
Mazarico, E., Genova, A., Goossens, S., Lemoine, F. G., Neumann, G. A., Zuber, M. T., Smith, D. E., & Solomon, S. C. (2014). The gravity field, orientation, and ephemeris of Mercury from MESSENGER observations after three years in orbit. Journal of Geophysical Research: Planets, 119, 2417–2436. https://doi.org/10.1002/2014JE004675
Michel, N. C., Hauck, S. A., Solomon, S. C., Phillips, R. J., Roberts, J. H., & Zuber, M. T. (2013). Thermal evolution of Mercury as constrained by MESSENGER observations. Journal of Geophysical Research: Planets, 118, 1033–1044. https://doi.org/10.1002/jgre.20049
Namur, O., & Charlier, B. (2017). Silicate mineralogy at the surface of Mercury. Nature Geoscience, 10, 9–13. https://doi.org/10.1038/ngeo2860
Namur, O., Collinet, M., Charlier, B., Grove, T. L., Holtz, F., & McCammon, C. (2016). Melting processes and mantle sources of lavas on Mercury. Earth and Planetary Science Letters, 439, 117–128. https://doi.org/10.1016/j.epsl.2016.01.030
Neumann, G. A., Perry, M. E., Mazarico, E., Ernst, C. M., Zuber, M. T., Smith, D. E., Becker, K. J., Gaskell, R. E., Head, J. W., Robinson, M. S., & Solomon, S. C. (2016). Mercury shape model from laser altimetry and planetary comparisons, 47th Lunar and Planetary Science Conference, The Woodlands, Texas, USA, abstract 2087. Retrieved from https://www.hou.usra.edu/meetings/lpsc2016/pdf/2087.pdf
Nittler, L. R., Chabot, N. L., Grove, T. L., & Peplowski, P. N. (2018). The chemical composition of Mercury. In S. C. Solomon, L. R. Nittler, & B. J. Anderson (Eds.), Mercury: The view after MESSENGER (pp. 30–51). Cambridge:Cambridge University Press. https://doi.org/10.1017/9781316650684.003
Nittler, L. R., Frank, E. A., Weider, S. Z., Crapster-Pregont, E., Vorburger, A., Starr, R. D., & Solomon, S. C. (2020). Global major-element maps of Mercury from four years of MESSENGER X-ray spectrometer observations. Icarus, 345, 113716. https://doi.org/10.1016/j.icarus.2020.113716
O'Neill, C., Moresi, L., & Lenardic, A. (2005). Insulation and depletion due to thickened crust: Effects on melt production on Mars and Earth. Geophysical Research Letters, 32, L14304. https://doi.org/10.1029/2005GL022855
Padovan, S., Tosi, N., Plesa, A.-C., & Ruedas, T. (2017). Impact-induced changes in source depth and volume of magmatism on Mercury and their observational signatures. Nature Communications, 8, 1945. https://doi.org/10.1038/s41467-017-01692-0
Padovan, S., Wieczorek, M. A., Margot, J.-L., Tosi, N., & Solomon, S. C. (2015). Thickness of the crust of Mercury from geoid-to-topography ratios. Geophysical Research Letters, 42, 1029–1038. https://doi.org/10.1002/2014GL062487
Phillips, R. J., Byrne, P. K., James, P. B., Mazarico, E., Neumann, G. A., & Perry, M. E.(2018). Mercury's crust and lithosphere: Structure and mechanics. In S. C. Solomon, L. R. Nittler, & B. J. Anderson (Eds.), Mercury: The view after MESSENGER (pp. 52–84). Cambridge:Cambridge University Press. https://doi.org/10.1017/9781316650684.004
Rivoldini, A., & Van Hoolst, T. (2013). The interior structure of Mercury constrained by the low-degree gravity field and the rotation of Mercury. Earth and Planetary Science Letters, 377, 62–72. https://doi.org/10.1016/j.epsl.2013.07.021
Roberts, J. H., & Barnouin, O. S. (2012). The effect of the Caloris impact on the mantle dynamics and volcanism of Mercury. Journal of Geophysical Research, 117, E02007. https://doi.org/10.1029/2011JE003876
Sori, M. M. (2018). A thin, dense crust for Mercury. Earth and Planetary Science Letters, 489, 92–99. https://doi.org/10.1016/j.epsl.2018.02.033
Stockstill-Cahill, K. R., McCoy, T. J., Nittler, L. R., Weider, S. Z., & Hauck, S. A. II (2012). Magnesium-rich crustal compositions on Mercury: Implications for magmatism from petrologic modeling. Journal of Geophysical Research, 117, E00L15. https://doi.org/10.1029/2012JE004140
Tosi, N., Grott, M., Plesa, A. C., & Breuer, D. (2013). Thermochemical evolution of Mercury's interior. Journal of Geophysical Research: Planets, 118, 2474–2487. https://doi.org/10.1002/jgre.20168
Tosi, N., & Padovan, S. (2020). Mercury, Moon, Mars: Surface expressions of mantle convection and interior evolution of stagnant-lid bodies. In H. Marquardt, M. Ballmer, S. Cottar, & K. Jasper (Eds.), Mantle convection and surface expressions,AGU Monograph Series. Washington, DC. https://arxiv.org/abs/1912.05207
Tosi, N., Čadek, O., Běhounková, M., Kánová, M., Plesa, A.-C., Grott, M., Breuer, D., Padovan, S., & Wieczorek, M. A. (2015). Mercury's low-degree geoid and topography controlled by insolation-driven elastic deformation. Geophysical Research Letters, 42, 7327–7335. https://doi.org/10.1002/2015GL065314
Vander Kaaden, K. E., McCubbin, F. M., Nittler, L. R., Peplowski, P. N., Weider, S. Z., Frank, E. A., & McCoy, T. J. (2017). Geochemistry, mineralogy, and petrology of boninitic and komatiitic rocks on the Mercurian surface: Insights into the Mercurian mantle. Icarus, 285, 155–168. https://doi.org/10.1016/j.icarus.2016.11.041
Wasylenki, L. E., Baker, M. B., Kent, A. J. R., & Stolper, E. M. (2003). Near-solidus melting of the shallow upper mantle: Partial melting experiments on depleted peridotite. Journal of Petrology, 44(7), 1163–1191. https://doi.org/10.1093/petrology/44.7.1163
Weider, S. Z., Nittler, L. R., Starr, R. D., Crapster-Pregont, E. J., Peplowski, P. N., Denevi, B. W., Head, J. W., Byrne, P. K., Hauck, S. A., Ebel, D. S., & Solomon, S. C. (2015). Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER's X-ray spectrometer. Earth and Planetary Science Letters, 416, 109–120. https://doi.org/10.1016/j.epsl.2015.01.023
Wieczorek, M. A., Neumann, G. A., Nimmo, F., Kiefer, W. S., Taylor, G. J., Melosh, H. J., Phillips, R. J., Solomon, S. C., Andrews-Hanna, J. C., Asmar, S. W., Konopliv, A. S., Lemoine, F. G., Smith, D. E., Watkins, M. M., Williams, J. G., & Zuber, M. T. (2013). The crust of the Moon as seen by GRAIL. Science, 339, 671–675. https://doi.org/10.1126/science.1231530