Knibbe, J. S.; Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium, Department of Earth Sciences, Faculty of Science, VU University Amsterdam, Amsterdam, Netherlands, Royal Observatory of Belgium, Brussels, Belgium, Institute of Astronomy, KU Leuven, Leuven, Belgium
Rivoldini, A.; Royal Observatory of Belgium, Brussels, Belgium
Luginbuhl, S. M.; Department of Earth Sciences, Faculty of Science, VU University Amsterdam, Amsterdam, Netherlands
Namur, O.; Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
Charlier, Bernard ; Université de Liège - ULiège > Département de géologie > Pétrologie, géochimie endogènes et pétrophysique
Mezouar, M.; European Synchrotron Radiation Facility (ESRF), Grenoble, France
Sifre, D.; European Synchrotron Radiation Facility (ESRF), Grenoble, France
Berndt, J.; Institute for Mineralogy, Westfälische Wilhelms-Universität Münster, Münster, Germany
Kono, Y.; Geodynamics Research Center, Ehime University, Ehime, Japan
Neuville, D. R.; Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, France
van Westrenen, W.; Department of Earth Sciences, Faculty of Science, VU University Amsterdam, Amsterdam, Netherlands
Van Hoolst, T.; Royal Observatory of Belgium, Brussels, Belgium, Institute of Astronomy, KU Leuven, Leuven, Belgium
Language :
English
Title :
Mercury's Interior Structure Constrained by Density and P-Wave Velocity Measurements of Liquid Fe-Si-C Alloys
Anderson, B. J., Johnson, C. L., Korth, H., Winslow, R. M., Borovsky, J. E., Purucker, M. E., et al. (2012). Low-degree structure in Mercury's planetary magnetic field. Journal of Geophysical Research, 117, E00L12. https://doi.org/10.1029/2012JE004159
Anzellini, S., Dewaele, A., Mezouar, M., Loubeyre, P., & Morard, G. (2013). Melting or iron at Earth's inner core boundary based on fast X-ray diffraction. Science, 340(6131), 464–466. https://doi.org/10.1126/science.1233514
Asphaug, E., & Reufer, A. (2014). Mercury and other iron-rich planetary bodies as relics of inefficient accretion. Nature Geoscience, 7, 564–568. https://doi.org/10.1038/ngeo2189
Baland, R.-M., Yseboodt, M., Van Hoolst, T., & Rivoldini, A. (2017). The influence of the fluid outer core and of the solid inner core on the orientation of the rotation axis of Mercury. EPSC Abstracts, 11, EPSC20175211.
Benz, W., Slattery, W. L., & Cameron, A. G. W. (1988). Collisional stripping of Mercury's mantle. Icarus, 74(3), 516–528. https://doi.org/10.1016/0019-1035(88)90118-2
Berthet, S., Malavergne, V., & Righter, K. (2009). Melting of the Indarch meteorite (EH4 chondrite) at 1 GPa and variable oxygen fugacity: Implications for early planetary differentiation processes. Geochimica et Cosmochimica Acta, 73(20), 6402–6420. https://doi.org/10.1016/j.gca.2009.07.030
Beuthe, M., Charlier, B., Namur, O., Rivoldini, A., & Van Hoolst, T. (2020). Mercury's crustal thickness correlates with lateral variations in mantle melt production. Geophysical Research Letters, 47(9). https://doi.org/10.1029/2020GL087261
Boujibar, A., Andrault, D., Bouhifd, M. A., Bolfan-Casanova, N., Devidal, J.-L., & Trcera, N. (2014). Metal-silicate partitioning of Sulphur, new experimental and thermodynamic constraints on planetary accretion. Earth and Planetary Science Letters, 391, 42–54. https://doi.org/10.1016/j.epsl.2014.01.021
Boukaré, C.-E., Parman, S. W., Parmentier, E. M., & Anzures, B. A. (2019). Production and preservation of sulfide layering in Mercury's mantle. Journal of Geophysical Research: Planets, 124(12), 3354–3372. https://doi.org/10.1029/2019JE005942
Byrne, P. K., Ostrach, L. R., Fasset, C. I., Chapman, C. R., Denevi, B. W., Evans, A. J., et al. (2016). Widespread effusive volcanism on Mercury likely ended by about 3.5 GPa. Geophysical Research Letters, 43(14), 7408–7416. https://doi.org/10.1002/2016GL069412
Cameron, A. G. W. (1985). The partial volatilization of Mercury. Icarus, 64(2), 285–294. https://doi.org/10.1016/0019-1035(85)90091-0
Cao, H., Aurnou, J. M., Wicht, J., Dietrich, W., Soderlund, K. M., & Russel, C. T. (2014). A dynamo explanation for Mercury's anomalous magnetic field. Geophysical Research Letters, 41(12), 4127–4134. https://doi.org/10.1002/2014GL060196
Cartier, C., Hammouda, T., Doucelance, R., Boyet, M., Devidal, J.-L., & Moine, B. (2014). Experimental study of trace element partitioning between enstatite and melt in enstatite chondrites at low oxygen fugacities and 5 GPa. Geochimica et Cosmochimica Acta, 130, 167–187. https://doi.org/10.1016/j.gca.2014.01.002
Cartier, C., Namur, O., Nittler, L. R., Weider, S. Z., Crapster-Pregont, E., Vorburger, A., et al. (2020). No FeS layer in Mercury? Evidence from Ti/Al measured by MESSENGER. Earth and Planetary Science Letters, 534, 116108. https://doi.org/10.1016/j.epsl.2020.116108
Chabot, N. L., Wollack, E. A., Klima, R. L., & Minitti, M. E. (2014). Experimental constraints on Mercury's core composition. Earth and Planetary Science Letters, 390, 199–208. https://doi.org/10.1016/j.epsl.2014.01.004
Charlier, B., & Namur, O. (2019). The origin and differentiation of planet Mercury. Elements, 15(1), 9–14. https://doi.org/10.2138/gselements.15.1.9
Chau, A., Reinhardt, C., Helled, R., & Stadel, J. (2018). Forming Mercury by giant impacts. The Astrophysical Journal, 865(1), 35. https://doi.org/10.3847/1538-4357/aad8b0
Chen, B., Li, J., & Hauck, S. A. (2008). Non-ideal liquidus curve in the Fe-S system and Mercury's snowing core. Geophysical Research Letters, 35(7). https://doi.org/10.1029/2008GL033311
Christensen, U. R. (2006). A deep dynamo generating Mercury's magnetic field. Nature, 444, 1056–1058. https://doi.org/10.1038/nature05342
Christensen, U. R., & Wicht, J. (2008). Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn. Icarus, 196(1), 16–34. https://doi.org/10.1016/j.icarus.2008.02.013
Dasgupta, R., Walker, D. (2008). Carbon solubility in core melts in a shallow magma ocean environment and distribution of carbon between the Earth's core and the mantle. Geochimica et Cosmochimica Acta, 72, (18), 4627–4641. https://doi.org/10.1016/j.gca.2008.06.023
Dorogokupets, P. I., Dymshits, A. M., Litasov, K. D., & Sokolova, T. S. (2017). Thermodynamics and equations of state of iron to 350 GPa and 6000 K. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/srep41863
Dubrovinsky, L. S., Saxena, S. K., & Lazor, P. (1998). High-pressure and high-temperature in situ X-ray diffraction study of iron and corundum to 68 GPa using an internally heated diamond anvil cell. Physics and Chemistry of Minerals, 25, 434–441. https://doi.org/10.1007/s002690050133
Dumberry, M., & Rivoldini, A. (2015). Mercury's inner core size and core-crystallization regime. Icarus, 248, 254–268. https://doi.org/10.1016/j.icarus.2014.10.038
Dumberry, M., Rivoldini, A., Van Hoolst, T., & Yseboodt, M. (2013). The role of Mercury's core density structure on its longitudinal librations. Icarus, 225(1), 62–74. https://doi.org/10.1016/j.icarus.2013.03.001
Ebel, D. S., & Stewart, S. T. (2018). The elusive origin of Mercury. In S. C. Solomon, L. R. Nittler, & B. J. Anderson (Eds.), Mercury: The view after MESSENGER (Ch 18, pp. 497–515). Cambridge, UK: Cambridge University Press.
Fegley, B., Jr., & Cameron, A. G. W. (1987). A vaporization model for iron/silicate fractionation in the Mercury protoplanet. Earth and Planetary Science Letters, 82(3–4), 207–222. https://doi.org/10.1016/0012-821X(87)90196-8
Fei, Y., Bertka, C. M., & Finger, L. W. (1997). High-pressure iron-sulfur compound, Fe3S2, and melting relations in the Fe-FeS system. Science, 275(5306), 1621–1623. https://doi.org/10.1126/science.275.5306.1621
Fei, Y., & Brosh, E. (2014). Experimental study and thermodynamical calculations of phase relations in the Fe-C system at high pressure. Earth and Planetary Science Letters, 408, 155–162. https://doi.org/10.1016/j.epsl.2014.09.044
Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., & Prakapenka, V. (2007). Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences of the United States of America, 104(22), 9182–9186. https://doi.org/10.1073/pnas.0609013104
Fischer, R. A., Campbell, A. J., Caracas, R., Reaman, D. M., Dera, P., & Prakapenka, V. B. (2012). Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earth's core. Earth and Planetary Science Letters, 357–358, 268–276. https://doi.org/10.1016/j.epsl.2012.09.022
Fischer, R. A., Campbell, A. J., Caracas, R., Reaman, D. M., Heinz, D. L., Dera, P., & Prakapenka, V. B. (2013). Equations of state in the Fe-FeSi system at high pressures and temperatures. Journal of Geophysical Research: Solid Earth, 119(4), 2810–2827. https://doi.org/10.1002/2013JB010898
Genova, A., Goossens, S., Mazarico, E., Lemoine, F. G., Neumann, G. A., Kuang, W., et al. (2019). Geodetic evidence that Mercury has a solid inner core. Geophysical Research Letters, 46(7), 3625–3633. https://doi.org/10.1029/2018GL081135
Hauck, S. A., Margot, J. L., Solomon, S. C., Phillips, R. J., Johnson, C. J., Lemoine, F. G., et al. (2013). The curious case of Mercury's internal structure. Journal of Geophysical Research: Planets, 118(6), 1204–1220. https://doi.org/10.1002/jgre.20091
Hubbard, A. (2014). Explaining Mercury's density through magnetic erosion. Icarus, 241, 329–335. https://doi.org/10.1016/j.icarus.2014.06.032
Jimbo, I., & Cramb, A. W. (1993). The density of liquid iron-carbon alloys. Metallurgical Transactions B, 24, 5–10. https://doi.org/10.1007/BF02657866
Kawai, Y., Mori, K., Kishimoto, M., Ishikura, K., & Shimada, T. (1974). Surface tension of liquid Fe-C-Si alloys. Tetsu-to-Hagane, 60(1), 29–37. https://doi.org/10.2355.tetsutohagane1955.60.1_29
Kilburn, M. R., & Wood, B. J. (1997). Metal-silicate partitioning and the incompatibility of S and Si during core formation. Earth and Planetary Science Letters, 152(1–4), 139–148. https://doi.org/10.1016/S0012-821X(97)00125-8
Knibbe, J. S. (2020). Mercury's interior structure constrained by density and P-wave velocity measurements of liquid Fe-Si-C alloys[Data set]. Zenodo. https://doi.org/10.5281/ZENODO.4090496
Knibbe, J. S., & van Westrenen, W. (2015). The interior configuration of planet Mercury constrained by moment of inertia and planetary contraction. Journal of Geophysical Research: Planets, 120(11), 1904–1923. https://doi.org/10.1002/2015JE004908
Knibbe, J. S., & van Westrenen, W. (2018). The thermal evolution of Mercury's Fe-Si core. Earth and Planetary Science Letters, 482, 147–159. https://doi.org/10.1016/j.epsl.2017.11.006
Komabayashi, T. (2014). Thermodynamics of melting relations in the system Fe-FeO at high pressure: Implications for oxygen in the Earth's core. Journal of Geophysical Research: Solid Earth, 119(5), 4164–4177. https://doi.org/10.1002/2014JB010980
Kono, Y., Park, C., Sakamaki, T., Kenny-Benson, C., Shen, G., & Wang, Y. (2012). Simultaneous structure and elastic wave velocity measurement of SiO2 glass at high pressure and high temperatures in a Paris-Edinburgh cell. Review of Scientific Instruments, 83, 033905. https://doi.org/10.1063/1.3698000
Konopliv, A. S., Park, R. S., & Emakov, A. I. (2020). The Mercury gravity field, orientation, love number, and ephemeris from the MESSENGER radiometric tracking data. Icarus, 335, 113386. https://doi.org/10.1016/j.icarus.2019.07.020
Kuwahara, H., Itoh, S., Nakada, R., & Irifune, T. (2019). The effects of carbon concentration and silicate composition on the metal-silicate partitioning of carbon in a shallow magma ocean. Geophysical Research Letters, 46(16), 9422–9429. https://doi.org/10.1029/2019GL084254
Kuwayama, Y., & Hirose, K. (2004). Phase relations in the system Fe-FeSi at 21 GPa. American Mineralogist, 89(2–3), 273–276. https://doi.org/10.2138/am-2004-2-303
Li, Y., Dasgupta, R., Tsuno, K., Monteleone, B., & Shimizu, N. (2016). Carbon and Sulfur budget of the silate Earth explained by accretion of differentiated planetary embryos. Nature Geoscience, 9, 781–785. https://doi.org/10.1038/ngeo2801
Litasov, K. D., Sharygin, I. S., Dorogokupets, P. I., Shatskiy, A., Gavryushkin, P. N., Sokolova, T. S., et al. (2013). Thermal equation of state and thermodynamic properties of iron carbide Fe3C to 31 GPa and 1473 K. Journal of Geophysical Research: Solid Earth, 118(10), 5274–5284. https://doi.org/10.1002/2013JB010270
Malavergne, V., Cordier, P., Righter, K., Brunet, F., Zanda, B., Addad, A., et al. (2014). How Mercury can be the most reduced terrestrial planet and still store iron in its mantle. Earth and Planetary Science Letters, 394, 186–197. https://doi.org/10.1016/j.epsl.2014.03.028
Manglik, A., Wicht, J., & Christensen, U. R. (2010). A dynamo model with double diffusive convection for Mercury. Earth and Planetary Science Letters, 289, 619–628. https://doi.org/10.1016/j.epsl.2009.12.007
Margot, J.-L., Peale, S. J., Solomon, S. C., Hauck, S. A., II, Ghigo, F. D., Jurgens, R. F., et al. (2012). Mercury's moment of inertia from spin and gravity data. Journal of Geophysical Research: Planets, 117(E12). https://doi.org/10.1029/2012JE004161
Mazarico, E., Genova, A., Goossens, S., Lemoine, F. G., Neumann, G. A., Zuber, M. T., et al. (2014). The gravity field, orientation, and ephemeris of Mercury from MESSENGER observations after three years in orbit. Journal of Geophysical Research: Planets, 119(12), 2417–2436. https://doi.org/10.1002/2014JE004675
McCoy, T. J., Dickinson, T. L., & Lofgren, G. E. (1999). Partial melting of the Indarch (EH4) meteorite: A textural, chemical, and phase relations view of melting and melt migration. Meteoritics and Planetary Science, 34(5), 735–746. https://doi.org/10.1111/j.1945-5100.1999.tb01386.x
McCubbin, F. M., Vander Kaaden, K. E., Peplowski, P. N., Bell, A. S., Nittler, L. R., Boyce, J. W., et al. (2017). A low O/Si ratio on the surface of Mercury: Evidence for silicon smelting? Journal of Geophysical Research: Planets, 122(10), 2053–2076. https://doi.org/10.1002/2017JE005367
Michel, N. C., Hauck, S. A., II, Solomon, S. C., Phillips, R. J., Roberts, J. H., & Zuber, M. T. (2013). Thermal evolution of Mercury as constrained by MESSENGER observations. Journal of Geophysical Research: Planets, 118(5), 1033–1044. https://doi.org/10.1002/jgre.20049
Morard, G., Andrault, D., Guignot, N., Siebert, J., Garbarino, G., & Antonangeli, D. (2011). Melting of Fe-Ni-Si and Fe-Ni-S alloys at megabar pressures: Implications for the core-mantle boundary temperature. Physics and Chemistry of Minerals, 38, 767–776. https://doi.org/10.1007/s00269-011-0449-9
Morard, G., Bouchet, J., Rivoldini, A., Antonangeli, D., Roberge, M., Boulard, E., et al. (2018). Liquid properties in the Fe-FeS system under moderate pressure: Tool box to model small planetary cores. American Mineralogist, 103(11), 1770–1779. http://dx.doi.org/10.2138/am-2018-6405
Morard, G., Siebert, J., Andrault, D., Guignot, N., Garbarino, G., Guyot, F., & Antonangeli, D. (2013). The Earth's core composition from high pressure density measurements of liquid iron alloys. Earth and Planetary Science Letters, 373, 169–178. https://doi.org/10.1016/j.epsl.2013.04.040
Nakajima, Y., Imada, S., Hirose, K., Komabayashi, T., Ozawa, H., Tateno, S., et al. (2015). Carbon-depleted outer core revealed by sound velocity measurements of liquid iron-carbon alloy. Nature Comminucations, 6(1), 1–7. https://doi.org/10.1038/ncomms9942
Namur, O., & Charlier, B. (2017). Silicate mineralogy at the surface of Mercury. Nature Geoscience, 10, 9–13. https://doi.org/10.1038/ngeo2860
Namur, O., Charlier, B., Holtz, F., Cartier, C., & McCammon, C. (2016). Sulfur Solubility in reduced mafic silicate melts: Implications for the speciation and distribution of sulfur on Mercury. Earth and Planetary Science Letters, 448, 102–114. https://doi.org/10.1016/j.epsl.2016.05.024
Ness, N. F. (1979). The magnetic field of Mercury. Physics of the Earth and Planetary Interiors, 20(2–4), 209–217. https://doi.org/10.1016/0031-9201(79)90044-X
Nittler, L. R., Chabot, N. L., Grove, T. L., & Peplowski, P. N. (2018). The chemical composition of Mercury. In S. C. Solomon, L. R. Nittler, & B. J. Anderson (Eds.), Mercury: The view after MESSENGER (Ch 2, pp. 30–51). Cambridge University Press, Cambridge.
Nittler, L. R., Starr, R. D., Weider, S. Z., McCoy, T. J., Boynton, W. V., Ebel, D. S., et al. (2011). The major-element composition of Mercury's surface from MESSENGER X-ray spectrometry. Science, 333(6051), 1847–1850. https://doi.org/10.1126/science.1211567
Padovan, S., Wieczorek, M. A., Margot, J.-L., Tosi, N., & Solomon, S. C. (2015). Thickness of the crust of Mercury from geoid-to-topography ratios. Geophysical Research Letters, 42(4), 1029–1038. https://doi.org/10.1002/2014GL062487
Peale, S. J. (1981). Measurements accuracies required for the determination of a Mercurian liquid core. Icarus, 48(1), 143–145. https://doi.org/10.1016/0019-1035(81)90160-3
Peale, S. J., Margot, J.-L., Hauck, S. A., II, & Solomon, S. C. (2016). Consequences of a solid inner core on Mercury's spin configuration. Icarus, 264, 443–455. https://doi.org/10.1016/j.icarus.2015.09.024
Peiris, S. M., Campbell, A. J., & Heinz, D. L. (1994). Compression of MgS to 54 GPa. Journal of Physics and Chemistry of Solids, 55(5), 413–419. https://doi.org/10.1016/0022-3697(94)90166-X
Peplowski, P. N., Evans, L. G., Hauck, S. A., II, McCoy, T. J., Boynton, W. V., Gillis-Davis, J. J., et al. (2011). Radioactive elements on Mercury's surface from MESSENGER: Implications for the planet's formation end evolution. Science, 333(6051), 1850–1852. https://doi.org/10.1126/science.1211576
Peplowski, P. N., Evans, L. G., Stockstill-cahill, K. R., Lawrence, D. J., Goldsten, J. O., McCoy, T. J., et al. (2014). Enhanced sodium abundance in Mercury's north polar region revealed by the MESSENGER Gamma-Ray Spectrometer. Icarus, 228, 86–95. https://doi.org/10.1016/j.icarus.2013.09.007
Peplowski, P. N., Lawrence, D. J., Evans, L. G., Klima, R. L., Blewett, D. T., Goldsten, J. O., et al. (2015). Constraints on the abundance of carbon in near-surface materials on Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. Planetary and Space Science, 108, 98–107. https://doi.org/10.1016/j.pss.2015.01.008
Petaev, M. I., Meibom, A., Krot, A. N., Wood, J. A., & Keil, K. (2001). The condensation origin of zoned metal grains in Queen Alexandra Range 94411: Implications for the formation of the Bencubbin-like chondrites. Meteoritics and Planetary Science, 36(1), 93–106. https://doi.org/10.1111/j.1945-5100.2001.tb01812.x
Pronin, L. A., Kazakov, N. V., & Filippov, S. I. (1964). Izvestia Vuzov. Chemaya Metallurgiya, 5, 12–16. (in Russian)
Rabe, E. (1950). Derivation of fundamental astronomical constants from the observations of Eros during 1926-1945. The Astronomical Journal, 55, 112–125. https://doi.org/10.1086/106364
Rivoldini, A., & Van Hoolst, T. (2013). The interior structure of Mercury constrained by the low-degree gravity field and the rotation of Mercury. Earth and Planetary Science Letters, 377–378, 62–72. https://doi.org/10.1016/j.epsl.2013.07.021
Sanloup, A., Fiquet, G., Gregoryanz, E., Morard, G., & Mezouar, M. (2004). Effect of Si on liquid compressibility: Implications for sound velocity in core materials. Geophysical Research Letters, 31(7). https://doi.org/10.1029/2004GL019526
Sanloup, C., van Westrenen, W., Dasgupta, R., Maynard-Casely, H., & Perrillat, J.-P. (2011). Compressibility change in iron-rich melt and implications for core formation models. Earth and Planetary Science Letters, 306(1–2), 118–122. https://doi.org/10.1016/j.epsl.2011.03.039
Shimoyama, Y., Terasaki, H., Urakawa, S., Takubo, Y., Kuwabara, S., Kishimoto, S., et al. (2016). Thermoelastic properties of liquid Fe-C revealed by sound velocity and density measurements at high pressure. Journal of Geophysical Research: Solid Earth, 121(11), 7984–7995. https://doi.org/10.1002/2016JB012968
Silber, R. E., Secco, R. A., Yong, W., & Littleton, J. A. H. (2018). Electrical resistivity of liquid Fe to 12 GPa: Implications for heat flow in cores of terrestrial bodies. Scientific Reports, 8, 10758. https://doi.org/10.1038/s41598-018-28921-w
Smith, D. E., Zuber, M. T., Phillips, R. J., Solomon, S. C., Hauck, S. A., II, Lemoine, F. G., et al. (2012). Gravity field and internal structure of Mercury from MESSENGER. Science, 336(6078), 214–217. https://doi.org/10.1126/science.1218809
Stark, A., Oberst, J., Preusker, F., Peale, S. J., Margot, J.-L., Phillips, R. J., et al. (2015). First MESSENGER orbital observations of Mercury's librations. Geophysical Research Letters, 42, 7881–7889. https://doi.org/10.1002/2015GL065152
Steenstra, E. S., & van Westrenen, W. (2020). Geochemical constraints on core-mantle differentiation in Mercury and the aubrite parent body. Icarus, 340, 113621. https://doi.org/10.1016/j.icarus.2020.113621
Stixrude, L., & Lithgow-Bertollini, C. (2011). Thermodynamics of mantle minerals – II. Phase equilibria. Geophysical Journal International, 184(3), 1180–1213. https://doi.org/10.1111/j.1365-246X.2010.04890.x
Steenstra, E. S., Seegers, A. X., Putter, R., Berndt, J., Klemme, S., Matveev, S., et al. (2020). Metal-silicate partitioning systematics of siderophile elements at reducing conditions: A new experimental database. Icarus, 335, 113391. http://dx.doi.org/10.1016/j.icarus.2019.113391
Takahashi, F., Shimizu, H., & Tsunakawa, H. (2019). Mercury's anomalous magnetic field caused by a symmetry-breaking self-regulating dynamo. Nature Communications, 10, 208. https://doi.org/10.1038/s41467-018-08213-7
Tateyama, R., Ohtani, E., Terasaki, H., Nishida, K., Shibazaki, Y., Suzuki, A., & Kikegawa, T. (2011). Density measurements of liquid Fe-Si alloys at high pressure using the sink-float method. Physics and Chemistry of Minerals, 38(10), 801–807. https://doi.org/10.1007/s00269-011-0452-1
Taylor, G. J., & Scott, E. R. D. (2003). Mercury. In H. H. Holland, & K. K. Turekian (Eds.), Treatise on geochemistry (Ch. 1.18, pp. 477–485). Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/B0-08-043751-6/01071-9
Terasaki, H., Nishida, K., Shibazaki, Y., Sakamaki, T., Suzuki, A., Ohtani, E., & Kikegawa, T. (2010). Density measurements of Fe3C liquid using X-ray absorption image up to 10 GPa and effect of light elements on compressibility of liquid iron. Journal of Geophysical Research: Solid Earth, 115(B6). https://doi.org/10.1002/2009JB006905
Terasaki, H., Rivoldini, A., Shimoyama, Y., Nishida, K., Urakawa, S., Maki, M., et al. (2019). Pressure and compositions effects on sound velocity and density of core-forming liquids: Implication to core compositions of terrestrial planets. Journal of Geophysical Research: Planets, 124(8), 2272–2293. https://doi.org/10.1029/2019JE005936
Tian, Z., Zuber, M. T., & Stanley, S. (2015). Magnetic field modelling for Mercury using dynamo models with a stable layer and laterally variable heat flux. Icarus, 260, 263–268. https://doi.org/10.1016/j.icarus.2015.07.019
Tosi, N., Grott, M., Plesa, A.-C., & Breuer, D. (2013). Thermochemical evolution of Mercury's interior. Journal of Geophysical Research: Planets, 118(12), 2474–2487. https://doi.org/10.1002/jgre.20168
Urakawa, S., Someya, K., Terasaki, H., Katsura, T., Yokoshi, S., Funakoshi, K., et al. (2004). Phase relationships and equations of state for FeS at high pressures and temperatures and implications for the internal structure of Mars. Physics of the Earth and Planetary Interiors, 143–144, 469–479. https://doi.org/10.1016/j.pepi.2003.12.015
Urey, H.C. (1951). The origin and development of the earth and other terrestrial planets. Geochimica et Cosmochimica Acta, 1(4–6), 209–277. https://doi.org/10.1016/0016-703(51)90001-4
Van Hoolst, T., Rivoldini, A., Baland, R.-M., & Yseboodt, M. (2012). The effect of tides and an inner core on the forced longitudinal libration of Mercury. Earth and Planetary Science Letters, 333–334, 83–90. https://doi.org/10.1016/j.epsl.2012.04.014
van Kan-Parker, M., Sanloup, C., Tronche, E. J., Perrilat, J.-P., Mezouar, M., Rai, N., & van Westrenen, W. (2010). Calibration of a diamond capsule cell assembly for in situ determination of liquid properties in the Paris-Edinburgh press. High Pressure Research, 30(2), 332–341. https://doi.org/10.1080/08957959.2010.484283
Vander Kaaden, K. E., & McCubbin, F. (2015). Exotic crust formation on Mercury: Consequences of a shallow, FeO-poor mantle. Journal of Geophysical Research: Planets, 120(2), 195–209. https://doi.org/10.1002/2014JE004733
Vander Kaaden, K. E., McCubbin, F. M., Nittler, L. R., Peplowski, P. N., Weider, S. Z., Frank, E. A., & McCoy, T. J. (2017). Geochemistry, mineralogy, and petrology of boninitic and komatiitic rocks on the Mercurian surface: Insights into the Mercurian mantle. Icarus, 285, 155–168. https://doi.org/10.1016/j.icerus.2016.11.041
Vander Kaaden, K. E., McCubbin, F. M., Turner, A. A., & Kent Ross, D. (2020). Constraints on the abundances of carbon and silicon in Mercury's core from experiments in the Fe-Si-C system. Journal of Geophysical Research: Planets, 125(5), e2019JE006239. https://doi.org/10.1029/2019JE006239
Vilim, R., Stanley, S., & Hauck, S. A., II (2010). Iron snow zones as a mechanism for generating Mercury's weak observed magnetic field. Journal of Geophysical Research: Planets, 115(E11). https://doi.org/10.1029/2009JE003528
Wagle, F., & Steinle-Neumann, G. (2019). Liquid iron equation of state to the terapascal regime from Ab initio simulations. Journal of Geophysical Research: Solid Earth, 124(4), 3350–3364. https://doi.org/10.1029/2018JB016994
Wakabayashi, D., & Funamori, N. (2015). Solving the problem of inconsistency in the reported equations of state for h-BN. High Pressure Research, 35(2), 123–129. https://doi.org/10.1080/08957959.2015.1028931
Wardinski, I., Amit, H., Langlais, B., & Thébault, E. (2020). The internal structure of Mercury's core inferred from magnetic observations. Earth and Space Science Open Archive. https://doi.org/10.1002/essoar.10503385.1
Watanabe, M., Adachi, M., & Fukuyama, H. (2016). Densities of Fe-Ni melts and thermodynamic correlations. Journal of Materials Science, 51, 3303–3310. https://doi.org/10.1007/s10853-015-9644-2
Weidenschilling, S. J. (1978). Iron/silicate fractionation and the origin of Mercury. Icarus, 35(1), 99–111. https://doi.org/10.1016/0019-1035(78)90064-7
Weider, S. Z., Nittler, L. R., Starr, R. D., McCoy, T. J., Stockstill-Cahill, K. R., Byrne, P. K., et al. (2012). Chemical heterogeneity on Mercury's surface revealed by the MESSENGER X-Ray Spectrometer. Journal of Geophysical Research: Planets, 117(E12). https://doi.org/10.1029/2012JE004153
Weisberg, M. K., Prinz, M., Clayton, R. N., Mayeda, T. K., Sugiura, N., Zashu, S., & Ebihara, M. (2001). A new metal-rich chondrite grouplet. Meteoritics and Planetary Science, 36(3), 401–418. https://doi.org/10.1111/j.1945-5100.2001.tb01882.x
Weyrauck, M., Zipfel, J., & Weyer, S. (2019). Origin of metal from CB chondrites in an impact plume – a combined study of Fe and Ni isotope composition and trace element abundances. Geochimica et Cosmochimica Acta, 246, 123–137. https://doi.org/10.1016/j.gca.2018.11.022
Williams, Q., Manghani, M. H., Secco, R. A., & Fu, S. (2015). Limitations on silicon in the outer core: Ultrasonic measurements at high temperature and high dK/dP values of Fe-Ni-Si liquids at high pressures. Journal of Geophysical Research: Solid Earth, 120(10), 6846–6855. https://doi.org/10.1002/2015JB012270
Wurm, G., Trieloff, M., & Rauer, H. (2013). Photophoretic separation of metals and silicates: The formation of Mercury-like planets and metal depletion in chondrites. The Astrophysical Journal, 769(1), 78. https://doi.org/10.1088/0004-637X/769/1/78
Yu, X., & Secco, R. A. (2008). Equation of state of liquid Fe-17 wt% Si to 12 GPa. High Pressure Research, 28(1), 19–28. https://doi.org/10.1080/08957950701882138
Zolotov, M. Y., Sprague, A. L., Hauck, S. A., Nittler, L. R., Solomon, S. C., & Weider, S. Z. (2013). The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. Journal of Geophysical Research: Planets, 118(1), 138–146. https://doi.org/10.1029/2012/JE004274
Blairs, S. (2007). Review of data for velocity of sound in pure liquid metals and metalloids. International Materials Reviews, 52(6), 321–344. https://doi.org/10.1179/174328007X212490
Griffing, V., Cargyle, M. A., Corvese, L., Eby, D. (1954). Temperature coefficients of viscosity of some halogen substituted organic compounds. The Journal of Physical Chemistry, 58(11), 1054–1056. https://doi.org/10.1021/j150521a032
Neuville, D. R. (2006). Viscosity, structure, and mixing in (Ca, Na) silicate melts. Chemical Geology, 229(1–3), 28–41. https://doi.org/10.1061/j.chemgeo.2006.01.008
Verma, A. K., Margot, J.-L (2016). Mercury's gravity, tides, and spin from MESSENGER radio science data. Journal of Geophysical Research: Planets, 121, 1627–1640. https://doi.org/10.1002/2016JE005037
Weber, R. C., Lin, P.-Y., Garnero, E. J., Williams, Q., & Lognonné, P. Z. (2011). Seismic detection of the lunar core. Science, 331(6015), 309–312. https://doi.org/10.1126/science.1199375
Yamashita, T., Tanaka, Y., Nagoshi, M., & Ishida, K. (2016). Novel technique to suppress hydrocarbon contamination for high accuracy determination of carbon content in steel by FE-EPMA. Scientific Reports, 6, 29825. https://doi.org/10.1038/srep29825