Paper published in a book (Scientific congresses and symposiums)
Closed-form dual perturb and combine for tree-based models
Geurts, Pierre; Wehenkel, Louis
2005In Proceedings of the International Conference on Machine Learning (ICML 2005)
Peer reviewed
 

Files


Full Text
geurts-icml-2005.pdf
Publisher postprint (218 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
machine learning; optimisation
Abstract :
[en] This paper studies the aggregation of predictions made by tree-based models for several perturbed versions of the attribute vector of a test case. A closed-form approximation of this scheme combined with cross-validation to tune the level of perturbation is proposed. This yields soft-tree models in a parameter free way, and reserves their interpretability. Empirical evaluations, on classification and regression problems, show that accuracy and bias/variance tradeoff are improved significantly at the price of an acceptable computational overhead. The method is further compared and combined with tree bagging.
Disciplines :
Computer science
Author, co-author :
Geurts, Pierre  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Wehenkel, Louis  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Closed-form dual perturb and combine for tree-based models
Publication date :
2005
Event name :
22nd International Conference on Machine Learning
Event place :
Bonn, Germany
Event date :
2005
Audience :
International
Main work title :
Proceedings of the International Conference on Machine Learning (ICML 2005)
Peer reviewed :
Peer reviewed
Available on ORBi :
since 16 October 2009

Statistics


Number of views
267 (9 by ULiège)
Number of downloads
280 (10 by ULiège)

Scopus citations®
 
8
Scopus citations®
without self-citations
7
OpenCitations
 
8
OpenAlex citations
 
11

Bibliography


Similar publications



Contact ORBi