[en] In this work, we show that targeted and controlled modifications of the Josephson junction properties of a bridge-type Nb nanoSQUID can be achieved by an electroannealing process allowing to tune and tailor the response of a single device. The electroannealing consists in substantial Joule heating produced by large current densities followed by a rapid temperature quench. We report on a highly non-trivial evolution of the material properties when performing subsequent electroannealing steps. As the current density is increased, an initial stage characterized by a modest improvement of the superconducting critical temperature and normal-state conductivity of the bridges, is observed. This is followed by a rapid deterioration of the junction properties, i.e. decrease of critical temperature and conductivity. Strikingly, further electroannealing leads to a noteworthy recovery before irreversible damage is produced. Within the electroannealing regime where this remarkable resurrection of the superconducting properties are observed, the nanoSQUID can be operated in nonhysteretic mode in the whole temperature range and without compromising the critical temperature of the device. The proposed postprocessing is particularly appealing in view of its simplicity and robustness.
Disciplines :
Physics
Author, co-author :
Collienne, Simon ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
Raes, Bart; Katholieke Universiteit Leuven - KUL > Department of Physics and Astronomy > Quantum Solid-State Physics
Keijers, Wout; Katholieke Universiteit Leuven - KUL > Department of Physics and Astronomy > Quantum Solid-State Physics
Van de Vondel, Joris; Katholieke Universiteit Leuven - KUL > Department of Physics and Astronomy > Quantum Solid-State Physics
Linek, Julian; Universität Tübingen > Physikalisches Institut > Center for Quantum Science (CQ) and LISA+
Koelle, Dieter; Universität Tübingen > Physikalisches Institut > Center for Quantum Science (CQ) and LISA+
Kleiner, Reinhold; Universität Tübingen > Physikalisches Institut > Center for Quantum Science (CQ) and LISA+
J. Clarke and A. I. Braginski, The SQUID Handbook. Vol. I: Fundamentals and Technology of SQUIDs and SQUID Systems (Wiley-VCH, 2004).
J. Clarke and A. I. Braginski, The SQUID Handbook. Vol. II: Applications of SQUIDs and SQUID Systems (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006).
C. Granata and A. Vettoliere, Nano superconducting quantum interference device: A powerful tool for nanoscale investigations, Phys. Rep. 614, 1 (2016). 0370-1573 10.1016/j.physrep.2015.12.001
D. D. Awschalom, J. R. Rozen, M. B. Ketchen, W. J. Gallagher, A. W. Kleinsasser, R. L. Sandstrom, and B. Bumble, Low-noise modular microsusceptometer using nearly quantum limited dc SQUIDs, Appl. Phys. Lett. 53, 2108 (1988). 0003-6951 10.1063/1.100291
M. Hatridge, R. Vijay, D. H. Slichter, J. Clarke, and I. Siddiqi, Dispersive magnetometry with a quantum limited SQUID parametric amplifier, Phys. Rev. B 83, 134501 (2011). 1098-0121 10.1103/PhysRevB.83.134501
M. J. Martínez-Pérez and D. Koelle, NanoSQUIDs: Basics & recent advances, Phys. Sci. Rev. 2, 20175001 (2017). 2365-659X 10.1515/psr-2017-5001
K. K. Likharev, Superconducting weak links, Rev. Mod. Phys. 51, 101 (1979). 0034-6861 10.1103/RevModPhys.51.101
A. A. Golubov, M. Y. Kupriyanov, and E. Il'ichev, The current-phase relation in Josephson junctions, Rev. Mod. Phys. 76, 411 (2004). 0034-6861 10.1103/RevModPhys.76.411
D. Hazra, J. R. Kirtley, and K. Hasselbach, Nano-superconducting quantum interference devices with suspended junctions, Appl. Phys. Lett. 104, 152603 (2014). 0003-6951 10.1063/1.4871317
K. Hasselbach, D. Mailly, and J. R. Kirtley, Micro-superconducting quantum interference device characteristics, J. Appl. Phys. 91, 4432 (2002). 0021-8979 10.1063/1.1448864
S. Biswas, C. B. Winkelmann, H. Courtois, and A. K. Gupta, Josephson coupling in the dissipative state of a thermally hysteretic (Equation presented)-SQUID, Phys. Rev. B 98, 174514 (2018). 2469-9950 10.1103/PhysRevB.98.174514
J. J. A. Baselmans, B. J. van Wees, and T. M. Klapwijk, Direct demonstration of circulating currents in a controllable (Equation presented)-SQUID generated by a 0 to (Equation presented) transition of the weak links, Phys. Rev. B 65, 224513 (2002). 0163-1829 10.1103/PhysRevB.65.224513
T. Schäpers, J. Malindretos, K. Neurohr, S. Lachenmann, A. van der Hart, G. Crecelius, H. Hardtdegen, H. Lüth, and A. A. Golubov, Demonstration of a current-controlled three-terminal (Equation presented) Josephson contact, Appl. Phys. Lett. 73, 2348 (1998). 0003-6951 10.1063/1.122457
G. J. Podd, G. D. Hutchinson, D. A. Williams, and D. G. Hasko, Micro-SQUIDs with controllable asymmetry via hot-phonon controlled junctions, Phys. Rev. B 75, 134501 (2007). 1098-0121 10.1103/PhysRevB.75.134501
R. Winik, I. Holzman, E. G. Dalla Torre, E. Buks, and Y. Ivry, Local tuning of the order parameter in superconducting weak links: A zero-inductance nanodevice, Appl. Phys. Lett. 112, 122601 (2018). 0003-6951 10.1063/1.5024045
A. Finkler, Y. Segev, Y. Myasoedov, M. L. Rappaport, L. Ne'eman, D. Vasyukov, E. Zeldov, M. E. Huber, J. Martin, and A. Yacoby, Self-aligned nanoscale SQUID on a tip, Nano Lett. 10, 1046 (2010). 1530-6984 10.1021/nl100009r
V. S. Zharinov, X. D. A. Baumans, A. V. Silhanek, E. Janssens, and J. Van de Vondel, Controlled electromigration protocol revised, Rev. Sci. Instrum. 89, 043904 (2018). 0034-6748 10.1063/1.5011953
X. D. A. Baumans, Ph.D. thesis, Université de Liège, Belgium, 2018. https://orbi.uliege.be/handle/2268/228346
W. Keijers, X. D. A. Baumans, R. Panghotra, J. Lombardo, V. S. Zharinov, Roman B. G. Kramer, A. V. Silhanek, and J. Van de Vondel, Nano-SQUIDs with controllable weak links created via current-induced atom migration, Nanoscale 10, 21475 (2018). 2040-3364 10.1039/C8NR06433D
A. F. Mayadas, R. B. Laibowitz, and J. J. Cuomo, Electrical characteristics of rf-sputtered single-crystal niobium films, J. Appl. Phys. 43, 1287 (1972). 0021-8979 10.1063/1.1661258
M. Tinkham, Introduction to Superconductivity (Dover Publications, Inc., McGraw-Hill, New York, 1996), 2nd ed.
P. H. Kes and C. C. Tsuei, Two-dimensional collective flux pinning, defects, and structural relaxation in amorphous superconducting films, Phys. Rev. B 28, 5126 (1983). 0163-1829 10.1103/PhysRevB.28.5126
M. M. Khapaev, M. Y. Kupriyanov, E. Goldobin, and M. Siegel, Current distribution simulation for superconducting multi-layered structures, Supercond. Sci. Technol. 16, 24 (2003). 0953-2048 10.1088/0953-2048/16/1/305
D. Drung, Introduction to (Equation presented)-Based SQUID sensors, IEEE/CSC ESAS Superconductivity News Forum (2016).
D. Hazra, Nanobridge superconducting quantum interference devices: Beyond the Josephson limit, Phys. Rev. B 99, 144505 (2019). 2469-9950 10.1103/PhysRevB.99.144505
A. Murphy and A. Bezryadin, Asymmetric nanowire SQUID: Linear current-phase relation, stochastic switching, and symmetries, Phys. Rev. B 96, 094507 (2017). 2469-9950 10.1103/PhysRevB.96.094507
J. Jaycox and M. Ketchen, Planar coupling scheme for ultra low noise dc squids, IEEE Trans. Magn. 17, 400 (1981). 0018-9464 10.1109/TMAG.1981.1060902
J. Lombardo, Z. L. Jelić, X. D. A. Baumans, J. E. Scheerder, J. P. Nacenta, V. V. Moshchalkov, J. Van de Vondel, R. B. G. Kramer, M. V. Milošević, and A. V. Silhanek, In situ tailoring of superconducting junctions via electro-annealing, Nanoscale 10, 1987 (2018). 2040-3364 10.1039/C7NR08571K
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevApplied.15.034016 for additional SEM, AFM and weak-link characterization measurements, the evolution of the coherence length during EA steps, the description of finite-element-method simulation. [40,41] and the application of a dynamic thermal model [11,39,42-44].
W. DeSorbo, Effect of dissolved gases on some superconducting properties of niobium, Phys. Rev. 132, 107 (1963). 0031-899X 10.1103/PhysRev.132.107
C. C. Koch, J. O. Scarbrough, and D. M. Kroeger, Effects of interstitial oxygen on the superconductivity of niobium, Phys. Rev. B 9, 888 (1974). 0556-2805 10.1103/PhysRevB.9.888
J. Halbritter, On the oxidation and on the superconductivity of niobium, Appl. Phys. A 43, 1 (1987). 0721-7250 10.1007/BF00615201
M. Hummelgård, R. Zhang, T. Carlberg, D. Vengust, D. Dvorsek, D. Mihailovic, and H. Olin, Nanowire transformation and annealing by Joule heating, Nanotechnology 21, 165704 (2010). 0957-4484 10.1088/0957-4484/21/16/165704
G. Bakan, N. Khan, A. Cywar, K. Cil, M. Akbulut, A. Gokirmak, and H. Silva, Self-heating of silicon microwires: Crystallization and thermoelectric effects, J. Mater. Res. 26, 1061 (2011). 0884-2914 10.1557/jmr.2011.32
M. Tohmyoh and H. Ishihara, Local modification of (Equation presented) microwires by Joule heating, Appl. Phys. Express 6, 077302 (2013). 1882-0778 10.7567/APEX.6.077302
K. S. McGarrity, B. Gao, and J. M. Thijssen, Simulation of Joule annealing in nanoscale (Equation presented) wires, Comput. Mater. Sci. 50, 3043 (2011). 0927-0256 10.1016/j.commatsci.2011.05.026
Y. J. Kim, R. Tao, R. F. Klie, and D. N. Seidman, Direct atomic-scale imaging of hydrogen and oxygen interstitials in pure niobium using atom-probe tomography and aberration-corrected scanning transmission electron microscopy, ACS Nano 7, 732 (2013). 1936-0851 10.1021/nn305029b
N. Kumar, T. Fournier, H. Courtois, C. B. Winkelmann, and A. K. Gupta, Reversibility of Superconducting (Equation presented) Weak Links Driven By The Proximity Effect in a Quantum Interference Device, Phys. Rev. Lett. 114, 157003 (2015). 0031-9007 10.1103/PhysRevLett.114.157003
A. K. Gupta, N.l Kumar, and S. Biswas, Temperature and phase dynamics in superconducting weak-link, J. Appl. Phys. 116, 173901 (2014). 0021-8979 10.1063/1.4900742
COMSOL Multiphysics® v. 5.4. COMSOL AB, Stockholm, Sweden.
A. D. Avery, S. J. Mason, D. Bassett, D. Wesenberg, and B. L. Zink, Thermal and electrical conductivity of approximately 100-nm permalloy, (Equation presented), (Equation presented), (Equation presented), and (Equation presented) films and examination of the Wiedemann-Franz law, Phys. Rev. B 92, 21 (2015). 1098-0121 10.1103/PhysRevB.92.214410
A. V. Gurevich and R. G. Mints, Self-heating in normal metals and superconductors, Rev. Mod. Phys. 59, 941 (1987). 0034-6861 10.1103/RevModPhys.59.941
X. D. A. Baumans, V. S. Zharinov, E. Raymenants, S. Blanco Alvarez, J. E. Scheerder, J. Brisbois, D. Massarotti, R. Caruso, F. Tafuri, E. Janssens, V. V. Moshchalkov, J. Van de Vondel, and A. V. Silhanek, Statistics of localized phase slips in tunable width planar point contacts, Sci. Rep. 7, 44569 (2017). 2045-2322 10.1038/srep44569
D. Hazra, J. R. Kirthley, and K. Hasselbach, Retrapping Current in Bridge-Type Nano-SQUIDs, Phys. Rev. Appl. 4, 024021 (2015). 2331-7019 10.1103/PhysRevApplied.4.024021