Article (Scientific journals)
Improving the bias/variance tradeoff of decision trees - towards soft tree induction
Geurts, Pierre; Olaru, Cristina; Wehenkel, Louis
2001In International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications, 9, p. 195-204
Peer reviewed
 

Files


Full Text
Wehenkel-paper.pdf
Publisher postprint (210.35 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
machine learning
Abstract :
[en] One of the main difficulties with standard top down induction of decision trees comes from the high variance of these methods. High variance means that, for a given problem and sample size, the resulting tree is strongly dependent on the random nature of the particular sample used for training. Consequently, these algorithms tend to be suboptimal in terms of accuracy and interpretability. This paper analyses this problem in depth and proposes a new method, relying on threshold softening, able to significantly improve the bias/variance tradeoff of decision trees. The algorithm is validated on a number of benchmark problems and its relationship with fuzzy decision tree induction is discussed. This sheds some light on the success of fuzzy decision tree induction and improves our understanding of machine learning, in general.
Disciplines :
Computer science
Author, co-author :
Geurts, Pierre  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Olaru, Cristina;  Université de Liège - ULiège > Dép. d'électricité, électronique et informatique > Systèmes et modélisation
Wehenkel, Louis  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Improving the bias/variance tradeoff of decision trees - towards soft tree induction
Publication date :
2001
Journal title :
International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications
ISSN :
1472-8915
eISSN :
2753-9806
Volume :
9
Pages :
195-204
Peer reviewed :
Peer reviewed
Available on ORBi :
since 15 October 2009

Statistics


Number of views
216 (5 by ULiège)
Number of downloads
3 (3 by ULiège)

Scopus citations®
 
4
Scopus citations®
without self-citations
2

Bibliography


Similar publications



Contact ORBi