[en] In this chapter, the important concepts of bias and variance are introduced. After an intuitive introduction to the bias/variance tradeoff, we discuss the bias/variance decompositions of the mean square error (in the context of regression problems) and of the mean misclassification error (in the context of classification problems). Then, we carry out a small empirical study providing some insight about how the parameters of a learning algorithm nfluence bias and variance.
Disciplines :
Computer science
Author, co-author :
Geurts, Pierre ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Bias vs. variance decomposition for regression and classification
Publication date :
2005
Main work title :
Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers