Atomic and molecular physics; Cold atoms; Light-matter interaction; Optical pumping
Abstract :
[en] Quantum-state preparation has a wide range of applications ranging from quantum optics to quantum metrology to fundamental physics precision measurements. In the context of nuclear β-decay correlation experiments such as the ones using argon, one needs to prepare a source of highly polarized atoms. Creating such a state-prepared sample amounts to generating a so-called stretched state, i.e., a state with the maximal projection of the total angular momentum along the quantization axis. This is typically achieved through optical pumping. Since this technique inherently depends on cycles of absorption followed by spontaneous emission, it may lead to undesirable heating and population loss. It is therefore crucial to devise polarization methods with both optimized efficiency and minimized drawbacks. We propose and compare various schemes, which we have been investigating numerically in the case of argon-35 atoms. We show that polarization degrees as high as 99.99% can be obtained within less than 140 μs.
Research Center/Unit :
Institut de Physique Nucléaire, Atomique et de Spectroscopie
Disciplines :
Physics
Author, co-author :
Lenaers, Florence ; Université de Liège - ULiège > Département de physique > Spectroscopie atomique et Physique des atomes froids
Glover, Rohan D.
Bastin, Thierry ; Université de Liège - ULiège > Département de physique > Spectroscopie atomique et Physique des atomes froids
Language :
English
Title :
Optical pumping schemes for nuclear spin polarization of 35Ar
Publication date :
11 January 2021
Journal title :
Physical Review. A, Atomic, molecular, and optical physics
ISSN :
1050-2947
eISSN :
1094-1622
Publisher :
American Physical Society, United States - Maryland
Volume :
103
Pages :
013105
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
BELSPO - Politique scientifique fédérale F.R.S.-FNRS - Fonds de la Recherche Scientifique
D. Počanić, Phys. Rev. Lett. 93, 181803 (2004) 10.1103/PhysRevLett.93.181803.
O. Naviliat-Cuncic and N. Severijns, Phys. Rev. Lett. 102, 142302 (2009) PRLTAO 0031-9007 10.1103/PhysRevLett.102.142302.
J. D. Jackson, S. B. Treiman, and H. W. Wyld Jr., Phys. Rev. 106, 517 (1957) PHRVAO 0031-899X 10.1103/PhysRev.106.517.
M. Auzinsh, D. Budker, and S. M. Rochester, Optically Polarized Atoms: Understanding Light-Atom Interactions (Oxford University Press, Oxford, 2010).
W. Happer, J. Yuan-Yu, and T. Walker, Optically Pumped Atoms (Wiley-VCH, New York, 2010).
C. Cohen-Tannoudji and D. Guéry-Odelin, Advances in Atomic Physics: An Overview (World Scientific, Singapore, 2011).
W. Gins, Nucl. Instrum. Meth. Phys. Res. A 925, 24 (2019) NIMAER 0168-9002 10.1016/j.nima.2019.01.082.
T. Ohtsubo, S. Roccia, N. J. Stone, J. R. Stone, C. Gaulard, U. Köster, J. Nikolov, G. S. Simpson, and M. Veskovic, J. Phys. G: Nucl. Part. Phys. 44, 044010 (2017) JPGPED 0954-3899 10.1088/1361-6471/aa5f22.
D. Kameda, AIP Conf. Proc. 980, 283 (2008) APCPCS 0094-243X 10.1063/1.2888098.
H. Törnqvist, Nucl. Instrum. Meth. Phys. Res. B 317, 685 (2013) NIMBEU 0168-583X 10.1016/j.nimb.2013.07.058.
N. Severijns and B. Blank, J. Phys. G: Nucl. Part. Phys. 44, 074002 (2017) JPGPED 0954-3899 10.1088/1361-6471/aa71e3.
N. Severijns, M. Tandecki, T. Phalet, and I. S. Towner, Phys. Rev. C 78, 055501 (2008) PRVCAN 0556-2813 10.1103/PhysRevC.78.055501.
E. Tiesinga, The 2018 CODATA Recommended Values of the Fundamental Physical Constants, Web Version 8.1, 2020.
I. S. Towner and J. C. Hardy, Rep. Prog. Phys. 73, 046301 (2010) RPPHAG 0034-4885 10.1088/0034-4885/73/4/046301.
L. Hayen and N. Severijns, arXiv:1906.09870.
S. B. Treiman, Phys. Rev. 110, 448 (1958). 10.1103/PhysRev.110.448
J. Chen, J. Cameron, and B. Singh, Nuclear Data Sheets 112, 2715 (2011) NDTSBA 0090-3752 10.1016/j.nds.2011.10.001.
W. Vassen, C. Cohen-Tannoudji, M. Leduc, D. Boiron, C. I. Westbrook, A. Truscott, K. Baldwin, G. Birkl, P. Cancio, and M. Trippenbach, Rev. Mod. Phys. 84, 175 (2012) RMPHAT 0034-6861 10.1103/RevModPhys.84.175.
N. Small-Warren and L. Chow Chiu, Phys. Rev. A 11, 1777 (1975) 0556-2791 10.1103/PhysRevA.11.1777.
H. Katori and F. Shimizu, Phys. Rev. Lett. 70, 3545 (1993) PRLTAO 0031-9007 10.1103/PhysRevLett.70.3545.
G. Norlén, Phys. Scr. 8, 249 (1973) PHSTBO 0031-8949 10.1088/0031-8949/8/6/007.
H. Katori and F. Shimizu, Jpn. J. Appl. Phys. 29, L2124 (1990) JAPLD8 0021-4922 10.1143/JJAP.29.L2124.
P. D. Edmunds and P. F. Barker, Phys. Rev. Lett. 113, 183001 (2014) PRLTAO 0031-9007 10.1103/PhysRevLett.113.183001.
F. Ritterbusch, S. Ebser, J. Welte, T. Reichel, A. Kersting, R. Purtschert, W. Aeschbach-Hertig, and M. K. Oberthaler, Geophys. Res. Lett. 41, 6758 (2014) GPRLAJ 0094-8276 10.1002/2014GL061120.
W. Gins, Development of a dedicated laser-polarization beamline for ISOLDE-CERN, Ph.D. thesis, KU Leuven (Belgium) (2019).
W. R. Johnson, Can. J. Phys. 89, 429 (2011) CJPHAD 0008-4204 10.1139/p11-018.
J. Li, P. Jönsson, M. Godefroid, C. Dong, and G. Gaigalas, Phys. Rev. A 86, 052523 (2012) PLRAAN 1050-2947 10.1103/PhysRevA.86.052523.
M. Walhout, A. Witte, and S. L. Rolston, Phys. Rev. Lett. 72, 2843 (1994) PRLTAO 0031-9007 10.1103/PhysRevLett.72.2843.
F. Atoneche and A. Kastberg, Eur. J. Phys. 38, 045703 (2017) EJPHD4 0143-0807 10.1088/1361-6404/aa6e6f.
S. Gu, J. A. Behr, M. N. Groves, and D. Dhat, Opt. Commun. 220, 365 (2003) OPCOB8 0030-4018 10.1016/S0030-4018(03)01424-X.
S. J. Park, T. Shin, J. H. Lee, G. D. Kim, and Y. K. Kim, J. Opt. Soc. Am. B 31, 2278 (2014) JOBPDE 0740-3224 10.1364/JOSAB.31.002278.
M. Auzinsh, D. Budker, and S. M. Rochester, Phys. Rev. A 80, 053406 (2009) PLRAAN 1050-2947 10.1103/PhysRevA.80.053406.
B. Wang, Y. Han, J. Xiao, X. Yang, C. Zhang, H. Wang, M. Xiao, and K. Peng, Phys. Rev. A 75, 051801 (R) (2007) PLRAAN 1050-2947 10.1103/PhysRevA.75.051801.
P. London, O. Firstenberg, M. Shuker, and A. Ron, Phys. Rev. A 81, 043835 (2010) PLRAAN 1050-2947 10.1103/PhysRevA.81.043835.