Paper published in a book (Scientific congresses and symposiums)
Elucidating the structure of genetic regulatory networks: a study of a second order dynamical model on artificial data
Quach, Minh; Geurts, Pierre; d Alché-Buc, Florence
2006In Proc. of the 14th European Symposium on Artificial Neural Networks
Peer reviewed
 

Files


Full Text
quach-esann2006.pdf
Author postprint (123.25 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
bioinformatics; machine learning
Abstract :
[en] Learning regulatory networks from time-series of gene expres- sion is a challenging task. We propose to use synthetic data to analyze the ability of a state-space model to retrieve the network structure while varying a number of relevant problem parameters. ROC curves together with new tools such as spectral clustering of local solutions found by EM are used to analyze these results and provide relevant insights.
Disciplines :
Computer science
Author, co-author :
Quach, Minh;  University of Evry > IBISC FRE CNRS 2871
Geurts, Pierre  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
d Alché-Buc, Florence;  University of Evry > IBISC FRE CNRS 2871
Language :
English
Title :
Elucidating the structure of genetic regulatory networks: a study of a second order dynamical model on artificial data
Publication date :
2006
Event name :
14th European Symposium on Artificial Neural Networks
Event place :
Bruges, Belgium
Event date :
April 26-28, 2006
Audience :
International
Main work title :
Proc. of the 14th European Symposium on Artificial Neural Networks
Peer reviewed :
Peer reviewed
Available on ORBi :
since 15 October 2009

Statistics


Number of views
58 (1 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
0

Bibliography


Similar publications



Contact ORBi