[en] The nth term of an automatic sequence is the output of a deterministic finite automaton fed with the representation of n in a suitable numeration system. In this paper, instead of considering automatic sequences built on a numeration system with a regular numeration language, we consider these built on languages associated with trees having periodic labeled signatures and, in particular, rational base numeration systems. We obtain two main characterizations of these sequences. The first one is concerned with r-block substitutions where r morphisms are applied periodically. In particular, we provide examples of such sequences that are not morphic. The second characterization involves the factors, or subtrees of finite height, of the tree associated with the numeration system and decorated by the terms of the sequence.
Disciplines :
Mathematics
Author, co-author :
Rigo, Michel ; Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Stipulanti, Manon ; Université de Liège - ULiège > Département de mathématique > Département de mathématique
Language :
English
Title :
Automatic sequences: from rational bases to trees
Publication date :
2021
Journal title :
Discrete Mathematics and Theoretical Computer Science
ISSN :
1365-8050
eISSN :
1462-7264
Publisher :
Maison de l'informatique et des mathematiques discretes, France
Volume :
24
Issue :
1
Pages :
Paper 25
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique [BE]
S. Akiyama, Ch. Frougny, and J. Sakarovitch, Powers of rationals modulo 1 and rational base number systems, Israel J. Math. 168 (2008), 53–91.
J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, Cambridge, (2003).
J. Berstel, L. Boasson, O. Carton, and I. Fagnot, Sturmian Trees, Theoret. Comput. Sci. 46 (2010), 443–478.
V. Berthé and M. Rigo, Combinatorics, Automata, and Number Theory, volume 135 of Encycl. Math. Appl. Cambridge, Cambridge University Press, (2010).
V. Bruyère and G. Hansel, Bertrand numeration systems and recognizability, Theoret. Comput. Sci. 181 (1997), 17–43.
É. Charlier, M. Le Gonidec, and M. Rigo, Representing real numbers in a generalized numeration system, J. Comput. System Sci. 77 (2011), no. 4, 743–759.
A. Cobham, Uniform tag sequences, Math. Systems Theory 6 (1972), 164–192.
K. Culik, J. Karhumäki, and A. Lepistö, Alternating iteration of morphisms and the Kolakovski sequence, in Lindenmayer systems, 93–106, Springer, Berlin, (1992).
F. M. Dekking, Regularity and irregularity of sequences generated by automata, Sém. Th. Nombres Bordeaux 79–80 (1980), 901–910.
J.-M. Dumont and A. Thomas, Systèmes de numération et fonctions fractales relatifs aux substitutions, Theoret. Comput. Sci. 65 (1989), 153–169.
T. Edgar, H. Olafson, and J. Van Alstine, Some combinatorics of rational base representations, preprint.
J. Endrullis and D. Hendriks, On periodically iterated morphisms, Proc. CSL-LICS’14 in Vienna (2014), 1–10.
A. S. Fraenkel, Systems of numeration, Amer. Math. Monthly 92 (1985), 105–114.
P. Lecomte and M. Rigo, Abstract numeration systems, Ch. 3, in Combinatorics, Automata and Number Theory, Encyclopedia Math. Appl. 135, Cambridge University Press, (2010).
A. Lepistö, On the power of periodic iteration of morphisms, ICALP 1993, 496–506, Lect. Notes Comp. Sci 700, (1993).
M. Lothaire, Combinatorics on Words, Cambridge Mathematical Library, Cambridge University Press, (1997).
A. Massuir, J. Peltomäki, and M. Rigo, Automatic sequences based on Parry or Bertrand numeration systems, Adv. Appl. Math. 108 (2019), 11–30.
V. Marsault, On pq -recognisable sets, Log. Methods Comput. Sci. 17 (2021), Paper No. 12, 22 pp. [19] V. Marsault, Énumération et numération, Ph.D. thesis, Télecom-Paristech, 2015.
V. Marsault and J. Sakarovitch, On sets of numbers rationally represented in a rational base number system. Algebraic informatics, Lect. Notes Comp. Sci. 8080, 89–100, Springer, Heidelberg, 2013.
V. Marsault and J. Sakarovitch, Breadth-first serialisation of trees and rational languages, Developments in Language Theory - 18th International Conference, 2014, Ekaterinburg, Russia, August 26-29, 2014, Lect. Notes Comp. Sci. 8633, 252–259.
V. Marsault and J. Sakarovitch, Trees and languages with periodic signature, Indagationes Mathematicae 28 (2017), 221–246.
V. Marsault and J. Sakarovitch, The signature of rational languages, Theor. Comput. Sci. 658 (2017), 216–234.
J.-J. Pansiot, Complexité des facteurs des mots infinis engendrés par morphismes itérés. Automata, languages and programming (Antwerp, 1984), 380–389, Lect. Notes Comp. Sci. 172, Springer, Berlin, (1984).
M. Rigo and A. Maes, More on generalized automatic sequences, J. Autom. Lang. Comb. 7 (2002), 351–376.
M. Rigo, Formal Languages, Automata and Numeration Systems, vol. 1 and 2, ISTE–Wiley, (2014).
J. Shallit, A second course in formal languages and automata theory, Cambridge University Press, Cambridge, (2009).
N. Sloane et al., The On-Line Encyclopedia of Integer Sequences, http://oeis.org.