[en] To use strongly lensed Type Ia supernovae (LSNe Ia) for cosmology, a time-delay measurement between the multiple supernova (SN) images is necessary. The sharp rise and decline of SN Ia light curves make them promising for measuring time delays, but microlensing can distort these light curves and therefore add large uncertainties to the measurements. An alternative approach is to use color curves where uncertainties due to microlensing are significantly reduced for a certain period of time known as the achromatic phase. In this work, we investigate in detail the achromatic phase, testing four different SN Ia models with various microlensing configurations. We find on average an achromatic phase of around three rest-frame weeks or longer for most color curves, but the spread in the duration of the achromatic phase (due to different microlensing maps and filter combinations) is quite large and an achromatic phase of just a few days is also possible. Furthermore, the achromatic phase is longer for smoother microlensing maps and lower macro-magnifications. From our investigations, we do not find a strong dependency on the SN model or on asymmetries in the SN ejecta. We find that six rest-frame LSST color curves exhibit features such as extreme points or turning points within the achromatic phase, which make them promising for time-delay measurements; however, only three of the color curves are independent. These curves contain combinations of rest-frame bands u, g, r, and i, and to observe them for typical LSN Ia redshifts, it would be ideal to cover (observer-frame) filters r, i, z, y, J, and H. If follow-up resources are restricted, we recommend r, i, and z as the bare minimum for using color curves and/or light curves since LSNe Ia are bright in these filters and observational uncertainties are lower than in the infrared regime. With additional resources, infrared observations in y, J, and H would be useful for obtaining color curves of SNe, especially at redshifts above ∼0.8 when they become critical.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Huber, S.; Max-Planck-Institut für Astrophysik, Karl-Schwarzschild Str. 1, 85741, Garching, Germany ; Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748, Garching, Germany
Suyu, S. H.; Max-Planck-Institut für Astrophysik, Karl-Schwarzschild Str. 1, 85741, Garching, Germany ; Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748, Garching, Germany ; Institute of Astronomy and Astrophysics, Academia Sinica, 11F of ASMAB, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
Noebauer, U. M.; Max-Planck-Institut für Astrophysik, Karl-Schwarzschild Str. 1, 85741, Garching, Germany ; Munich Re, IT1.6.4.1, Königinstraße 107, 80802, München, Germany
Chan, J. H. H.; Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, 1290, Versoix, Switzerland
Kromer, M.; Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
Sim, S. A.; Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, UK
Sluse, Dominique ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Origines Cosmologiques et Astrophysiques (OrCa)
Taubenberger, S.; Max-Planck-Institut für Astrophysik, Karl-Schwarzschild Str. 1, 85741, Garching, Germany)
Language :
English
Title :
HOLISMOKES. III. Achromatic phase of strongly lensed Type Ia supernovae
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Barnabè, M., Czoske, O., Koopmans, L. V. E., Treu, T., & Bolton, A. S. 2011, MNRAS, 415, 2215
Baron, E., Bongard, S., Branch, D., & Hauschildt, P. H. 2006, ApJ, 645, 480
Bessell, M., & Murphy, S. 2012, PASP, 124, 140
Birrer, S., Treu, T., Rusu, C. E., et al. 2019, MNRAS, 484, 4726
Birrer, S., Shajib, A. J., Galan, A., et al. 2020, A&A, 643, A165
Bonvin, V., Chan, J. H. H., Millon, M., et al. 2018, A&A, 616, A183
Bonvin, V., Tihhonova, O., Millon, M., et al. 2019, A&A, 629, A97
Chang, K., & Refsdal, S. 1979, Nature, 282, 561
Chen, G. C.-F., Chan, J. H. H., Bonvin, V., et al. 2018, MNRAS, 481, 1115
Chen, G. C.-F., Fassnacht, C. D., Suyu, S. H., et al. 2019, MNRAS, 490, 1743
Courbin, F., Bonvin, V., Buckley-Geer, E., et al. 2018, A&A, 609, A71
Dessart, L., Hillier, D. J., Blondin, S., & Khokhlov, A. 2014, MNRAS, 441, 3249
Eliasdottir, A., Hjorth, J., Toft, S., Burud, I., & Paraficz, D. 2006, ApJS, 166, 443
Falco, E. E., Gorenstein, M. V., & Shapiro, I. I. 1985, ApJ, 289, L1
Foxley-Marrable, M., Collett, T. E., Vernardos, G., Goldstein, D. A., & Bacon, D. 2018, MNRAS, 478, 5081
Freedman, W. L., Madore, B. F., Hatt, D., et al. 2019, ApJ, 882, 34
Freedman, W. L., Madore, B. F., Hoyt, T., et al. 2020, ApJ, 891, 57
Gall, E. E. E., Taubenberger, S., Kromer, M., et al. 2012, MNRAS, 427, 994
Goldstein, D. A., & Nugent, P. E. 2017, ApJ, 834, L5
Goldstein, D. A., Nugent, P. E., Kasen, D. N., & Collett, T. E. 2018, ApJ, 855, 22
Goobar, A., Amanullah, R., Kulkarni, S. R., et al. 2017, Science, 356, 291
Hillebrandt, W., & Niemeyer, J. C. 2000, ARA&A, 38, 191
Hillebrandt, W., Kromer, M., Röpke, F. K., & Ruiter, A. J. 2013, Front. Phys., 8, 116
Hoyle, F., & Fowler, W. A. 1960, ApJ, 132, 565
Huber, S., Suyu, S. H., Noebauer, U. M., et al. 2019, A&A, 631, A161
Irwin, M. J., Webster, R. L., Hewett, P. C., Corrigan, R. T., & Jedrzejewski, R. I. 1989, AJ, 98, 1989
Jeffery, D. J., Leibundgut, B., Kirshner, R. P., et al. 1992, ApJ, 397, 304
Jiménez-Vicente, J., Mediavilla, E., Kochanek, C. S., & Muñoz, J. A. 2015, ApJ, 799, 149
Kasen, D., Thomas, R. C., & Nugent, P. 2006, ApJ, 651, 366
Kayser, R., Refsdal, S., & Stabell, R. 1986, A&A, 166, 36
Kelly, P. L., Brammer, G., Selsing, J., et al. 2016 a, ApJ, 819, L8
Kelly, P. L., Rodney, S. A., Treu, T., et al. 2016 b, ApJ, 831, 205
Khetan, N., Izzo, L., Branchesi, M., et al. 2020,. ArXiv e-prints [arXiv:2008.07754]
Kromer, M., & Sim, S. A. 2009, MNRAS, 398, 1809
Kromer, M., Fremling, C., Pakmor, R., et al. 2016, MNRAS, 459, 4428
Lentz, E. J., Baron, E., Branch, D., Hauschildt, P. H., & Nugent, P. E. 2000, ApJ, 530, 966
Livio, M., & Mazzali, P. 2018, Phys. Rep., 736, 1
LSST Science Collaboration (Abell, P. A., et al.) 2009,. ArXiv e-prints [arXiv:0912.0201]
Lucy, L. B. 1999, A&A, 344, 282
Mediavilla, E., Muñoz, J. A., Garzón, F., & Mahoney, T. J. 2016, Astrophysical Applications of Gravitational Lensing (Cambridge: Cambridge University Press)
Millon, M., Galan, A., Courbin, F., et al. 2020, A&A, 639, A101
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.