Ground-based 3D LiDAR; Point clouds partition; Automatic partition; Canopy dimensions; Variable rate; Crop protection
Abstract :
[en] The 3D characterisation of individual vine canopies with a LiDAR sensor requires point
cloud classification. A Bayesian point cloud classification algorithm (BPCC) is proposed that
combines an automatic filtering method (AFM) and a classification method based on
clustering to process LiDAR data. Data were collected on several grape varieties with two
different modes of training. To evaluate the quality of the BPCC algorithm and its influence
on the estimation of canopy parameters (height and width), it was compared to an expert
manual method and to an established semi-automatic research method requiring interactive
pre-treatment (PROTOLIDAR). The results showed that the AFM filtering was similar
to the expert manual method and retained on average 9% more points than the PROTOLIDAR
method over the whole growing season. Estimates of vegetation height and width
that were obtained from classification of the AFM-filtered LiDAR data were strongly
correlated with estimates made by the PROTOLIDAR method (R2 ¼ 0.94 and 0.89, respectively).
The classification algorithm was most effective if its parameters were permitted to
be variable through the season. Optimal values for classification parameters were established
for both height and width at different phenological stages. On the whole, the results
demonstrated that although the BPCC algorithm operates at a higher level of automation
than PROTOLIDAR, the estimates of canopy dimensions in the vineyards were equivalent.
BPCC enables the possibility to adjust the spray rate according to local vegetative characteristics
in an automated way.
Lebeau, Frédéric ; Université de Liège - ULiège > Département GxABT > Biosystems Dynamics and Exchanges
Taylor, James
Language :
English
Title :
An algorithm to automate the filtering and classifying of 2D LiDAR data for site-specific estimations of canopy height and width in vineyards
Publication date :
2020
Journal title :
Biosystems Engineering
ISSN :
1537-5110
eISSN :
1537-5129
Publisher :
Elsevier, Atlanta, Georgia
Volume :
200
Pages :
450-465
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Experimental and statistical modeling of relations between morphological characteristics of grapevine and spraying deposits: application to precision agriculture
Funding text :
#DigitAg and French Vine and Wine Institute and Agricultural Technical Coordination Association
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
del-Moral-Martínez, I., Arnó, J., Escolà, A., Sanz, R., Masip-Vilalta, J., Company-Messa, J., Rosell-Polo, J., Georeferenced scanning system to estimate the leaf wall area in tree crops. Sensors 15:4 (2015), 8382–8405, 10.3390/s150408382.
del-Moral-Martinez, I., Rosell-Polo, J.R., Company, J., Sanz, R., Masip, J., Martínez-Casasnovas, J.A., Arnó, J., Mapping vineyard leaf area using mobile terrestrial laser scanners: Should rows be scanned on-the-go or discontinuously sampled?. Sensors, 16(1), 2016, 119, 10.3390/s16010119.
Andersen, H.J., Reng, L., Kirk, K., Geometric plant properties by relaxed stereo vision using simulated annealing. Computers and Electronics in Agriculture 49:2 (2005), 219–232, 10.1016/j.compag.2005.02.015.
Arnó, J., Escolà, A., Masip, J., Rosell-Polo, J.R., Influence of the scanned side of the row in terrestrial laser sensor applications in vineyards: Practical consequences. Precision Agriculture 16:2 (2015), 119–128, 10.1007/s11119-014-9364-7.
Arnó, J., Escolà, A., Rosell-Polo, J.R., Setting the optimal length to be scanned in rows of vines by using mobile terrestrial laser scanners. Precision Agriculture 18:2 (2017), 145–151, 10.1007/s11119-016-9451-z.
Arnó, J., Escolà, A., Vallès, J.M., Llorens, J., Sanz, R., Masip, J., Palacín, J., Rosell-Polo, J.R., Leaf area index estimation in vineyards using a ground-based LiDAR scanner. Precision Agriculture 14:3 (2013), 290–306, 10.1007/s11119-012-9295-0.
Bastianelli, M., Rudnicki, V.D., Codis, S., Ribeyrolles, X., Naud, O., Two vegetation indicators from 2D ground Lidar scanner compared for predicting spraying deposits on grapevine. Proceedings of the 2017 EFITA WCCA conference, montpellier, France, 2017, 153–154.
Berk, P., Hocevar, M., Stajnko, D., Belsak, A., Development of alternative plant protection product application techniques in orchards, based on measurement sensing systems: A review. Computers and Electronics in Agriculture 124 (2016), 273–288, 10.1016/j.compag.2016.04.018.
Byers, R.E., Hickey, K.D., Hill, C.H., Base gallonage per acre. Virginia Fruit 60:8 (1971), 19–23.
Campos, J., Llop, J., Gallart, M., García-Ruiz, F., Gras, A., Salcedo, R., Gil, E., Development of canopy vigour maps using UAV for site-specific management during vineyard spraying process. Precision Agriculture 20:6 (2019), 1136–1156, 10.1007/s11119-019-09643-z.
de Castro, A., Jiménez-Brenes, F., Torres-Sánchez, J., Peña, J., Borra-Serrano, I., López-Granados, F., 3-D characterization of vineyards using a novel UAV imagery-based OBIA procedure for precision viticulture applications. Remote Sensing, 10(4), 2018, 584, 10.3390/rs10040584.
Codis, S., Stakes for a new model of dose expression in viticulture: Advantages and points to be taken into consideration. Proceedings of the EPPO Workshop on harmonized dose expression for the zonal evaluation of plant protection products in high growing crops, 2016, Austrian Agency for Health and Food Safety Vienna, 12–13.
Colaço, A.F., Molin, J.P., Rosell-Polo, J.R., Escolà, A., Application of light detection and ranging and ultrasonic sensors to high-throughput phenotyping and precision horticulture: Current status and challenges. Horticulture research 5:1 (2018), 1–11, 10.1038/s41438-018-0043-0.
Escolà, A., Martínez-Casasnovas, J.A., Rufat, J., Arnó, J., Arbonés, A., Sebé, F., Pascual, M., Gregorio, E., Rosell-Polo, J.R., Mobile terrestrial laser scanner applications in precision fruticulture/horticulture and tools to extract information from canopy point clouds. Precision Agriculture 18:1 (2017), 111–132, 10.1007/s11119-016-9474-5.
Fraley, C., Raftery, A., Model-based methods of Classification : Using the mclust software in chemometrics. Journal of Statistical Software, 18(6), 2007, 10.18637/jss.v018.i06.
Fraley, C., Raftery, A.E., Mclust version 4 for R: Normal mixture modeling for model-based clustering, classification, and density estimation. Technical report No. 597., 2012, Department of Statistics, University of Washington.
Gil, E., Arnó, J., Llorens, J., Sanz, R., Llop, J., Rosell-Polo, J., Gallart, M., Escolà, A., Advanced technologies for the improvement of spray application techniques in Spanish viticulture: An overview. Sensors 14:1 (2014), 691–708, 10.3390/s140100691.
Gil, E., Escolà, A., Rosell, J.R., Planas, S., Val, L., Variable rate application of plant protection products in vineyard using ultrasonic sensors. Crop Protection 26:8 (2007), 1287–1297, 10.1016/j.cropro.2006.11.003.
Gil, E., Llorens, J., Llop, J., Fàbregas, X., Escolà, A., Rosell-Polo, J.R., Variable rate sprayer. Part 2 – vineyard prototype: Design, implementation, and validation. Computers and Electronics in Agriculture 95 (2013), 136–150, 10.1016/j.compag.2013.02.010.
Jaakkola, A., Hyyppä, J., Kukko, A., Yu, X., Kaartinen, H., Lehtomäki, M., Lin, Y., A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements. ISPRS Journal of Photogrammetry and Remote Sensing 65:6 (2010), 514–522, 10.1016/j.isprsjprs.2010.08.002.
Lee, K.H., Ehsani, R., A laser scanner based measurement system for quantification of citrus tree geometric characteristics. Applied Engineering in Agriculture 25:5 (2009), 777–788, 10.13031/2013.28846.
Lin, L.I.-K., A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45(1), 1989, 255, 10.2307/2532051.
Llorens, J., Gil, E., Llop, J., Escolà, A., Variable rate dosing in precision viticulture: Use of electronic devices to improve application efficiency. Crop Protection 29:3 (2010), 239–248, 10.1016/j.cropro.2009.12.022.
Llorens, J., Gil, E., Llop, J., Escolà, A., Ultrasonic and LiDAR sensors for electronic canopy characterization in vineyards: Advances to improve pesticide application methods. Sensors 11:2 (2011), 2177–2194, 10.3390/s110202177.
Llorens, J., Gil, E., Llop, J., Queraltó, M., Georeferenced LiDAR 3D vine plantation map generation. Sensors 11:6 (2011), 6237–6256, 10.3390/s110606237.
Lorenz, D.H., Eichorn, K.W., Bleiholder, H., Klose, U., Meier, U., Weber, E., Phänologische entwicklungsstadien der Weinrebe (Vitis vinifera L. spp. vinifera). (Phenological stages of grapevine (Vitis vinifera L. spp. vinifera)). Viticultural and Enological Science 49 (1994), 66–70.
Manktelow, D.W.L., Praat, J.P., The tree-row-volume spraying system and its potential use in New Zealand. Proceedings of the New Zealand Plant Protection Conference 50 (1997), 119–124, 10.30843/nzpp.1997.50.11360.
Mathews, A., Jensen, J., Visualizing and quantifying vineyard canopy LAI using an unmanned aerial vehicle (UAV) collected high density structure from motion point cloud. Remote Sensing 5:5 (2013), 2164–2183, 10.3390/rs5052164.
Miranda, C., Santesteban, L.G., Escalona, J.M., De Herralde, F., Aranda, X., Nadal, M., Intrigliolo, D., Castel, J., Royo, J., Medrano, H., Allometric relationships for estimating vegetative and reproductive biomass in grapevine (Vitis vinifera L.): Allometric relations for grapevine biomass. Australian Journal of Grape and Wine Research 23:3 (2017), 441–451, 10.1111/ajgw.12285.
Moorthy, I., Miller, J.R., Berni, J.A.J., Zarco-Tejada, P., Hu, B., Chen, J., Field characterization of olive (Olea europaea L.) tree crown architecture using terrestrial laser scanning data. Agricultural and Forest Meteorology 151:2 (2011), 204–214, 10.1016/j.agrformet.2010.10.005.
Palacin, J., Palleja, T., Tresanchez, M., Sanz, R., Llorens, J., Ribes-Dasi, M., Masip, J., Arnó, J., Escolà, A., Rosell, J.R., Real-time tree-foliage surface estimation using a ground laser scanner. IEEE Transactions on Instrumentation and Measurement 56:4 (2007), 1377–1383, 10.1109/TIM.2007.900126.
Pergher, G., Petris, R., Pesticide dose adjustment in vineyard spraying and potential for dose reduction. Manuscript ALNARP 08 011. Agricultural Engineering International CIGR Ejournal X (May) 10 (2008), 1–10.
Poni, S., Lakso, A., Intrieri, C., Rebucci, B., Filippetti, I., Laser scanning estimation of relative light interception by canopy components in different grapevine training systems. VITIS-GEILWEILERHOF 35 (1996), 177–182.
Rinaldi, M., Llorens, J., Gil, E., Electronic characterization of the phenological stages of grapevine using a LiDAR sensor. Precision Agriculture Wageningen, Vol. 13, 2013, Academic Publishers, 603–609.
Rosell Polo, J.R., Sanz, R., Llorens, J., Arnó, J., Escolà, A., Ribes-Dasi, M., Masip, J., Camp, F., Gràcia, F., Solanelles, F., Pallejà, T., Planas, S., Gil, E., Val, L., Palacín, J., A tractor-mounted scanning LiDAR for the non-destructive measurement of vegetative volume and surface area of tree-row plantations: A comparison with conventional destructive measurements. Biosystems Engineering 102:2 (2009), 128–134, 10.1016/j.biosystemseng.2008.10.009.
Rosell, J.R., Llorens, J., Sanz, R., Arnó, J., Ribes-Dasi, M., Masip, J., Escolà, A., Camp, F., Solanelles, F., Gràcia, F., Gil, E., Val, L., Planas, S., Palacín, J., Obtaining the three-dimensional structure of tree orchards from remote 2D terrestrial LiDAR scanning. Agricultural and Forest Meteorology 149:9 (2009), 1505–1515, 10.1016/j.agrformet.2009.04.008.
Rosell, J.R., Sanz, R., A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Computers and Electronics in Agriculture 81 (2012), 124–141, 10.1016/j.compag.2011.09.007.
Rovira-Más, F., Reid, J.F., Zhang, Q., Stereovision data processing with 3d density maps for agricultural vehicles. Transactions of the ASABE 49 (2006), 1213–1222.
Rüegg, J., Siegfried, W., Raisigl, U., Viret, O., Steffek, R., Reisenzein, H., Persen, U., Registration of plant protection products in EPPO countries: Current status and possible approaches to harmonization. EPPO Bulletin 31:2 (2001), 143–152, 10.1111/j.1365-2338.2001.tb00983.x.
Saddem, R., Naud, O., Cazenave, P., Godary-Dejean, K., Crestani, D., Precision spraying: From map to sprayer control using model-checking. Journal of Agricultural Informatics 8:3 (2017), 1–10.
Sanz, R., Llorens, J., Escolà, A., Arnó, J., Planas, S., Román, C., Rosell-Polo, J.R., LiDAR and non-LiDAR-based canopy parameters to estimate the leaf area in fruit trees and vineyard. Agricultural and Forest Meteorology 260–261 (2018), 229–239, 10.1016/j.agrformet.2018.06.017.
Sanz, R., Palacin, J., Sisó, J., Ribes-Dasi, M., Masip, J., Arnó, J., Llorens, J., Valles, J.M., Rosell, J., Advances in the measurement of structural characteristics of plants with a LiDAR scanner. International conference on agricultural engineering, leuven (Belgium). Book of abstracts of the AgEng 2004 conference, paper No. 27, 2004, 400–401.
Sanz, R., Rosell, J.R., Llorens, J., Gil, E., Planas, S., Relationship between tree row LiDAR-volume and leaf area density for fruit orchards and vineyards obtained with a LiDAR 3D Dynamic Measurement System. Agricultural and Forest Meteorology 171–172 (2013), 153–162, 10.1016/j.agrformet.2012.11.013.
Schultz, H., Grape canopy structure, light microclimate and photosynthesis. I. A two-dimensional model of the spatial distribution of surface area densities and leaf ages in two canopy systems. Vitis 34 (1995), 211–215.
Schumann, A.W., Zaman, Q.U., Software development for real-time ultrasonic mapping of tree canopy size. Computers and Electronics in Agriculture 47:1 (2005), 25–40, 10.1016/j.compag.2004.10.002.
Siebers, M., Edwards, E., Jimenez-Berni, J., Thomas, M., Salim, M., Walker, R., Fast phenomics in vineyards: Development of GRover, the grapevine rover, and LiDAR for assessing grapevine traits in the field. Sensors, 18(9), 2018, 2924, 10.3390/s18092924.
Siegfried, W., Viret, O., Huber, B., Wohlhauser, R., Dosage of plant protection products adapted to leaf area index in viticulture. Crop Protection 26:2 (2007), 73–82, 10.1016/j.cropro.2006.04.002.
Solanelles, F., Escolà, A., Planas, S., Rosell, J.R., Camp, F., Gràcia, F., An electronic control system for pesticide application proportional to the canopy width of tree crops. Biosystems Engineering 95:4 (2006), 473–481, 10.1016/j.biosystemseng.2006.08.004.
Stajnko, D., Berk, P., Lešnik, M., Jejčič, V., Lakota, M., Štrancar, A., Hočevar, M., Rakun, J., Programmable ultrasonic sensing system for targeted spraying in orchards. Sensors 12:11 (2012), 15500–15519, 10.3390/s121115500.
Taylor, J.A., Bates, T.R., Temporal and Spatial Relationships in Pruning Mass of Concord Vines. Australian Journal Grape Wine Res 19:3 (2013), 401–408, 10.1111/ajgw.12035.
Tisseyre, B., Mazzoni, C., Fonta, H., Within-field temporal stability of some parameters in viticulture: Potential toward a site specific management. OENO One 42:1 (2008), 27–39.
Torres-Sánchez, J., López-Granados, F., Borra-Serrano, I., Peña, J.M., Assessing UAV-collected image overlap influence on computation time and digital surface model accuracy in olive orchards. Precision Agriculture 19:1 (2018), 115–133, 10.1007/s11119-017-9502-0.
Van der Zande, D., Hoet, W., Jonckheere, I., van Aardt, J., Coppin, P., Influence of measurement set-up of ground-based LiDAR for derivation of tree structure. Agricultural and Forest Meteorology 141 (2006), 147–160.
Vercruysse, F., Steurbaut, W., Drieghe, S., Dejonckheere, W., Off target ground deposits from spraying a semi-dwarf orchard. Crop Protection 18 (1999), 565–570.
Viret, O., Höhn, H., Application de la dose selon la méthode du TRV. Revue Suisse de Viticulture Arboriculture Horticulture 40 (2008), 50–51.
Viret, O., Siegfried, W., Wohlhauser, R., Crop adapted spraying in viticulture. Leaf volume dependant pesticide dosage for a precise and ecological application. 8thworkshop on spray application techniques in fruit growing, Barcelona, Spain. 2005, 23–24.
Walklate, P.J., Cross, J.V., Pergher, G., Support system for efficient dosage of orchard and vineyard spraying products. Computers and Electronics in Agriculture 75 (2011), 355–362.
Walklate, P.J., Cross, J.V., Richardson, G.M., Murray, R.A., Baker, D.E., IT—information technology and the human interface. Biosystems Engineering 82:3 (2002), 253–267, 10.1006/bioe.2002.0082.
Westfall, P.H., Johnson, W.O., Utts, J.M., A Bayesian perspective on the Bonferroni adjustment. Biometrika 84:2 (1997), 419–427.
Wohlhauser, R., Dose rate expression in tree fruits – the need for harmonization approach from a chemical producer industry perspective. Proceedings of the tree fruit dose adjustment discussion group meeting, wageningen, The Netherlands, 2009 September 2009.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.