Article (Scientific journals)
Three decades of trace element sediment contamination: The mining of governmental databases and the need to address hidden sources for clean and healthy seas
Richir, Jonathan; Bray, Simon; McAleese, Tom et al.
2021In Environment International, 149, p. 106362
Peer Reviewed verified by ORBi
 

Files


Full Text
Richir et al. (2021) - Env. Intern._draft.pdf
Publisher postprint (3.42 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Sediment; Metal; Metalloid; Benthic; Antifouling; Shipping; Eutrophication
Abstract :
[en] Trace elements (TEs) frequently contaminate coastal marine sediments with many included in priority chemical lists or control legislation. These, improved waste treatment and increased recycling have fostered the belief that TE pollution is declining. Nevertheless, there is a paucity of long-term robust datasets to support this confidence. By mining UK datasets (100s of sites, 31 years), we assess sediment concentrations of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) and use indices (PI [Pollution], TEPI [Trace Element Pollution] and Igeo [Geoaccumulation]) to assess TE pollution evolution. PI and TEPI show reductions of overall TE pollution in the 1980s then incremental improvements followed by a distinct increase (2010–13). Zn, As and Pb Igeo scores show low pollution, whilst Cd and Hg are moderate, but with all remaining temporally stable. Igeo scores are low for Ni, Fe and Cr, but increasing for Ni and Fe. A moderate pollution Igeo score for Cu has also steadily increased since the mid-1990s. Increasing site trends are not universal and, conversely, minimal temporal change masks some site-specific increases and decreases. To capture this variability we strongly advocate embedding sufficient sentinel sites within observation networks. Decreasing sediment pollution levels (e.g. Pb and Hg) have been achieved, but stabilizing Igeo and recently increasing TEPI and PI scores require continued global vigilance. Increasing Ni and Fe Igeo scores necessitate source identification, but this is a priority for Cu. Local, regional and world analyses indicate substantial ‘hidden’ inputs from anti-fouling paints (Cu, Zn), ship scrubbers (Cu, Zn, Ni) and sacrificial anodes (Zn) that are also predicted to increase markedly. Accurate TE input assessments and targeted legislation are, therefore, urgently required, especially in the context of rapid blue economic growth (e.g. shipping).
Research center :
Institute of Marine Sciences, University of Portsmouth
Disciplines :
Earth sciences & physical geography
Author, co-author :
Richir, Jonathan  ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Chemical Oceanography Unit (COU)
Bray, Simon
McAleese, Tom
Watson, Gordon
Language :
English
Title :
Three decades of trace element sediment contamination: The mining of governmental databases and the need to address hidden sources for clean and healthy seas
Publication date :
03 February 2021
Journal title :
Environment International
ISSN :
0160-4120
eISSN :
1873-6750
Publisher :
Elsevier, United Kingdom
Volume :
149
Pages :
106362
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Channel Catchments Cluster (3C) programme
Funders :
FEDER - Fonds Européen de Développement Régional [BE]
Available on ORBi :
since 13 February 2021

Statistics


Number of views
76 (2 by ULiège)
Number of downloads
85 (1 by ULiège)

Scopus citations®
 
18
Scopus citations®
without self-citations
15
OpenCitations
 
15

Bibliography


Similar publications



Contact ORBi