[en] We propose and analyze a mechanism for rectification of spin transport through a small junction between two spin baths or leads. For interacting baths, we show that transport is conditioned on the spacial asymmetry of the quantum junction mediating the transport, and attribute this behavior to a gapped spectral structure of the lead-system-lead configuration. For noninteracting leads, a minimal quantum model that allows for spin rectification requires an interface of only two interacting two-level systems. In our paper, we have performed a thorough study of the current, including its time dependence and steady-state value. We obtain approximate results with a weak-coupling Born master equation in excellent agreement with matrix-product-state calculations that are extrapolated in time by mimicking absorbing boundary conditions. These results should be observable in controlled spin systems realized with cold atoms, trapped ions, or in electrons in quantum dot arrays.
Disciplines :
Physics
Author, co-author :
Mascarenhas, Eduardo; Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom
Damanet, François ; Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
Flannigan, Stuart; Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom
Tagliacozzo, Luca; Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom ; Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
Daley, Andrew J.; Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom
Goold, John; School of Physics, Trinity College Dublin, The University of Dublin, College Green Dublin 2, Ireland)
de Vega, Inés
Language :
English
Title :
Nonreciprocal quantum transport at junctions of structured leads
S. Hild, T. Fukuhara, P. Schauss, J. Zeiher, M. Knap, E. Demler, I. Bloch, and C. Gross, Far-From-Equilibrium Spin Transport in Heisenberg Quantum Magnets, Phys. Rev. Lett. 113, 147205 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.113.147205
S. Krinner, M. Lebrat, D. Husmann, C. Grenier, J.-P. Brantut, and T. Esslinger, Mapping out spin and particle conductances in a quantum point contact, Proc. Natl. Acad. Sci. USA 113, 8144 (2016). PNASA6 0027-8424 10.1073/pnas.1601812113
M. Lebrat, P. Grišins, D. Husmann, Samuel Häusler, L. Corman, T. Giamarchi, J.-P. Brantut, and T. Esslinger, Band and Correlated Insulators of Cold Fermions in a Mesoscopic Lattice, Phys. Rev. X 8, 011053 (2018). 2160-3308 10.1103/PhysRevX.8.011053
B. P. Lanyon, C. Hempel, D. Nigg, M. Muller, R. Gerritsma, F. Zahringer, P. Schindler, J. T. Barreiro, M. Rambach, G. Kirchmair, Universal digital quantum simulation with trapped ions, Science 334, 57 (2011). SCIEAS 0036-8075 10.1126/science.1208001
R. Blatt and C. F. Roos, Quantum simulations with trapped ions, Nat. Phys. 8, 277 (2012). 1745-2473 10.1038/nphys2252
Z. Su, A. B. Tacla, M. Hocevar, D. Car, S. R. Plissard, E. P. A. M. Bakkers, A. J. Daley, D. Pekker, and S. M. Frolov, Andreev molecules in semiconductor nanowire double quantum dots, Nat. Commun. 8, 585 (2017). 2041-1723 10.1038/s41467-017-00665-7
D. L. Hurst, D. M. Price, C. Bentham, M. N. Makhonin, B. Royall, E. Clarke, P. Kok, L. R. Wilson, M. S. Skolnick, and A. M. Fox, Nonreciprocal transmission and reflection of a chirally coupled quantum dot, Nano Lett. 18, 5475 (2018) NALEFD 1530-6984 10.1021/acs.nanolett.8b01869
T. Christen and M. Büttiker, Gauge-invariant nonlinear electric transport in mesoscopic conductors, Europhys. Lett. 35, 523 (1996). EULEEJ 0295-5075 10.1209/epl/i1996-00145-8
E. Mascarenhas, D. Valente, S. Montangero, A. Auffeves, D. Gerace, and M. F. Santos, A quantum optical valve in a nonlinear-linear resonator junction, Europhys. Lett. 106, 54003 (2014). EULEEJ 0295-5075 10.1209/0295-5075/106/54003
F. Fratini, E. Mascarenhas, L. Safari, J. P. Poizat, D. Valente, A. Auffeves, D. Gerace, and M. F. Santos, Fabry-Perot Interferometer with Quantum Mirrors: Nonlinear Light Transport and Rectification, Phys. Rev. Lett. 113, 243601 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.113.243601
E. Mascarenhas, M. F. Santos, A. Auffeves, and D. Gerace, Quantum rectifier in a one-dimensional photonic channel, Phys. Rev. A 93, 043821 (2016). 2469-9926 10.1103/PhysRevA.93.043821
C. Gonzalez-Ballestero, E. Moreno, F. J. Garcia-Vidal, and A. Gonzalez-Tudela, Nonreciprocal few-photon routing schemes based on chiral waveguide-emitter couplings, Phys. Rev. A 94, 063817 (2016). 2469-9926 10.1103/PhysRevA.94.063817
K. Joulain, J. Drevillon, Y. Ezzahri, and J. Ordonez-Miranda, Quantum Thermal Transistor, Phys. Rev. Lett. 116, 200601 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.200601
Y.-J. Li, L.-Z. Lu, and X.-Y. Yu, Coherent field-controlled rectification and directional emission in a one-dimensional waveguide, J. Opt. Soc. Am. B 34, 2317 (2017). JOBPDE 0740-3224 10.1364/JOSAB.34.002317
C. Muller, J. Combes, A. R. Hamann, A. Fedorov, and T. M. Stace, Nonreciprocal atomic scattering: A saturable, quantum Yagi-Uda antenna, Phys. Rev. A 96, 053817 (2017). 2469-9926 10.1103/PhysRevA.96.053817
Yao-Lung L. Fang and H. U. Baranger, Multiple emitters in a waveguide: Nonreciprocity and correlated photons at perfect elastic transmission, Phys. Rev. A 96, 013842 (2017). 2469-9926 10.1103/PhysRevA.96.013842
J. Ordonez-Miranda, Y. Ezzahri, and K. Joulain, Quantum thermal diode based on two interacting spinlike systems under different excitations, Phys. Rev. E 95, 022128 (2017). 2470-0045 10.1103/PhysRevE.95.022128
J. Dai, A. Roulet, H. N. Le, and V. Scarani, Rectification of light in the quantum regime, Phys. Rev. A 92, 063848 (2015). PLRAAN 1050-2947 10.1103/PhysRevA.92.063848
A. Metelmann and A. A. Clerk, Nonreciprocal Photon Transmission and Amplification via Reservoir Engineering, Phys. Rev. X 5, 021025 (2015). 2160-3308 10.1103/PhysRevX.5.021025
F. Fratini and R. Ghobadi, Full quantum treatment of a light diode, Phys. Rev. A 93, 023818 (2016). 2469-9926 10.1103/PhysRevA.93.023818
D. Roy, Critical features of nonlinear optical isolators for improved nonreciprocity, Phys. Rev. A 96, 033838 (2017). 2469-9926 10.1103/PhysRevA.96.033838
H. Z. Shen, Y. H. Zhou, and X. X. Yi, Quantum optical diode with semiconductor microcavities, Phys. Rev. A 90, 023849 (2014). PLRAAN 1050-2947 10.1103/PhysRevA.90.023849
A. Purkayastha, A. Dhar, and M. Kulkarni, Non-linear transport in an out-of-equilibrium single-site Bose Hubbard model: Scaling, rectification and time dynamics, Phys. Rev. A 94, 052134 (2016). 2469-9926 10.1103/PhysRevA.94.052134
A. Rosario Hamann, C. Muller, M. Jerger, M. Zanner, J. Combes, M. Pletyukhov, M. Weides, T. M. Stace, and A. Fedorov, Nonreciprocity Realized with Quantum Nonlinearity, Phys. Rev. Lett. 121, 123601 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.121.123601
S. Lepri and G. Casati, Asymmetric Wave Propagation in Nonlinear Systems, Phys. Rev. Lett. 106, 164101 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.106.164101
K. A. van Hoogdalem and D. Loss, Rectification of spin currents in spin chains, Phys. Rev. B 84, 024402 (2011). PRBMDO 1098-0121 10.1103/PhysRevB.84.024402
B. Braunecker, D. E. Feldman, and J. B. Marston, Rectification in one-dimensional electronic systems, Phys. Rev. B 72, 125311 (2005). PRBMDO 1098-0121 10.1103/PhysRevB.72.125311
L. Zhang, Y. Yan, C. Q. Wu, J. S. Wang, and B. Li, Reversal of thermal rectification in quantum systems, Phys. Rev. B 80, 172301 (2009). PRBMDO 1098-0121 10.1103/PhysRevB.80.172301
J. Thingna and J. S. Wang, Spin rectification in thermally driven XXZ spin chain via the spin-Seebeck effect, Europhys. Lett. 104, 37006 (2013). EULEEJ 0295-5075 10.1209/0295-5075/104/37006
D. Segal, Single Mode Heat Rectifier: Controlling Energy Flow between Electronic Conductors, Phys. Rev. Lett. 100, 105901 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.100.105901
Z. Wei, M. Kondratenko, L. H. Dao, and D. F. Perepichka, Rectifying diodes from asymmetrically functionalized single-wall carbon nanotubes, J. Am. Chem. Soc. 128, 3134 (2006). JACSAT 0002-7863 10.1021/ja053950z
Z. Lenarcic and T. Prosen, Exact asymptotics of the current in boundary-driven dissipative quantum chains in large external fields, Phys. Rev. E 91, 030103 (R) (2015). PLEEE8 1539-3755 10.1103/PhysRevE.91.030103
G. T. Landi, E. Novais, M. J. de Oliveira, and D. Karevski, Flux rectification in the quantum XXZ chain, Phys. Rev. E 90, 042142 (2014). PLEEE8 1539-3755 10.1103/PhysRevE.90.042142
L. Schuab, E. Pereira, and G. T. Landi, Energy rectification in quantum graded spin chains: Analysis of the XXZ model, Phys. Rev. E 94, 042122 (2016). 2470-0045 10.1103/PhysRevE.94.042122
E. Pereira, Rectification and one-way street for the energy current in boundary-driven asymmetric quantum spin chains, Phys. Rev. E 95, 030104 (R) (2017). 2470-0045 10.1103/PhysRevE.95.030104
E. Pereira, Requisite ingredients for thermal rectification, Phys. Rev. E 96, 012114 (2017). 2470-0045 10.1103/PhysRevE.96.012114
V. Balachandran, G. Benenti, E. Pereira, G. Casati, and D. Poletti, Perfect Diode in Quantum Spin Chains, Phys. Rev. Lett. 120, 200603 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.120.200603
E. Pereira, Heat, work, and energy currents in the boundary-driven XXZ spin chain, Phys. Rev. E 97, 022115 (2018). 2470-0045 10.1103/PhysRevE.97.022115
T. Werlang, M. A. Marchiori, M. F. Cornelio, and D. Valente, Optimal rectification in the ultrastrong coupling regime, Phys. Rev. E 89, 062109 (2014). PLEEE8 1539-3755 10.1103/PhysRevE.89.062109
D. Malz and A. Nunnenkamp, Current rectification in a double quantum dot through fermionic reservoir engineering, Phys. Rev. B 97, 165308 (2018). 2469-9950 10.1103/PhysRevB.97.165308
A. Braggio, J. Konig, and R. Fazio, Full Counting Statistics in Strongly Interacting Systems: Non-Markovian Effects, Phys. Rev. Lett. 96, 026805 (2006). PRLTAO 0031-9007 10.1103/PhysRevLett.96.026805
C. Flindt, T. Novotny, A. Braggio, M. Sassetti, and A.-P. Jauho, Counting Statistics of Non-Markovian Quantum Stochastic Processes, Phys. Rev. Lett. 100, 150601 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.100.150601
K. H. Thomas and C. Flindt, Electron waiting times in non-Markovian quantum transport, Phys. Rev. B 87, 121405 (R) (2013). PRBMDO 1098-0121 10.1103/PhysRevB.87.121405
J. Cerrillo, M. Buser, and T. Brandes, Nonequilibrium quantum transport coefficients and transient dynamics of full counting statistics in the strong-coupling and non-Markovian regimes, Phys. Rev. B 94, 214308 (2016). 2469-9950 10.1103/PhysRevB.94.214308
X. Zheng, J. Luo, J. Jin, and Y. Yan, Complex non-Markovian effect on time-dependent quantum transport, J. Chem. Phys. 130, 124508 (2009). JCPSA6 0021-9606 10.1063/1.3095424
J. Jin, X.-Q. Li, M. Luo, and Y. Yan, Non-Markovian shot noise spectrum of quantum transport through quantum dots, J. Appl. Phys. 109, 053704 (2011). JAPIAU 0021-8979 10.1063/1.3555586
A. Lofgren, C. A. Marlow, I. Shorubalko, R. P. Taylor, P. Omling, L. Samuelson, and H. Linke, Symmetry of Two-Terminal Nonlinear Electric Conduction, Phys. Rev. Lett. 92, 046803 (2004). PRLTAO 0031-9007 10.1103/PhysRevLett.92.046803
J. Schulenborg, J. Splettstoesser, and M. R. Wegewijs, Duality for open fermion systems: Energy-dependent weak coupling and quantum master equations, Phys. Rev. B 98, 235405 (2018). 2469-9950 10.1103/PhysRevB.98.235405
R. G. Pereira, S. R. White, and I. Affleck, Spectral function of spinless fermions on a one-dimensional lattice, Phys. Rev. B 79, 165113 (2009). PRBMDO 1098-0121 10.1103/PhysRevB.79.165113
I. S. Eliens, F. B. Ramos, J. C. Xavier, and R. G. Pereira, Boundary versus bulk behavior of time-dependent correlation functions in one-dimensional quantum systems, Phys. Rev. B 93, 195129 (2016). 2469-9950 10.1103/PhysRevB.93.195129
T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, Oxford, UK, 2004).
A. Kadlecová, Ma. Žonda, and T. Novotný, Quantum dot attached to superconducting leads: Relation between symmetric and asymmetric coupling, Phys. Rev. B 95, 195114 (2017). 2469-9950 10.1103/PhysRevB.95.195114
G. D. Mahan, Many-Particle Physics (Plenum Press, New York, 1990).
R. Kubo, Statistical-mechanical theory of irreversible processes. I: General theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Jpn. 12, 570 (1957). JUPSAU 0031-9015 10.1143/JPSJ.12.570
R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys. 29, 255 (1966). RPPHAG 0034-4885 10.1088/0034-4885/29/1/306
R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II (Springer, Berlin, 1985).
M. T. Mitchison and M. B. Plenio, Non-additive dissipation in open quantum networks out of equilibrium, New J. Phys. 20, 033005 (2018). NJOPFM 1367-2630 10.1088/1367-2630/aa9f70
H. J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer, Berlin, 1999).
H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002).
A. Purkayastha, A. Dhar, and M. Kulkarni, Out-of-equilibrium open quantum systems: A comparison of approximate quantum master equation approaches with exact results, Phys. Rev. A 93, 062114 (2016). 2469-9926 10.1103/PhysRevA.93.062114
P. P. Hofer, M. Perarnau-Llobet, L. David, M. Miranda Haack, R. Silva, J. B. Brask, and N. Brunner, Markovian master equations for quantum thermal machines: Local versus global approach, New J. Phys. 19, 123037 (2017). NJOPFM 1367-2630 10.1088/1367-2630/aa964f
J. Onam Gonzalez, L. A. Correa, G. Nocerino, J. P. Palao, D. Alonso, and G. Adesso, Testing the validity of the local and global GKLS master equations on an exactly solvable model, Open Syst. Inform. Dyn. 24, 1740010 (2017). 1230-1612 10.1142/S1230161217400108
D. Jaschke, L. D. Carr, and I. de Vega, Thermalization in the quantum Ising model-Approximations, limits, and beyond, arXiv:1805.04934.
T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev. 58, 1098 (1940). PHRVAO 0031-899X 10.1103/PhysRev.58.1098
A. Gonzalez-Tudela and J. I. Cirac, Quantum Emitters in Two-Dimensional Structured Reservoirs in the Nonperturbative Regime, Phys. Rev. Lett. 119, 143602 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.119.143602
K. Bidzhiev and G. Misguich, Out-of-equilibrium dynamics in a quantum impurity model: Numerics for particle transport and entanglement entropy, Phy. Rev. B 96, 195117 (2017). 2469-9950 10.1103/PhysRevB.96.195117
J. J. Garcia-Ripoll, Time evolution algorithms for matrix product states and DMRG, New J. Phys. 8, 305 (2006). NJOPFM 1367-2630 10.1088/1367-2630/8/12/305
T. Koffel, M. Lewenstein, and L. Tagliacozzo, Entanglement Entropy for the Long-Range Ising Chain in a Transverse Field, Phys. Rev. Lett. 109, 267203 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.109.267203
P. Hauke and L. Tagliacozzo, Spread of Correlations in Long-Range Interacting Quantum Systems, Phys. Rev. Lett. 111, 207202 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.111.207202
J. Schachenmayer, B. P. Lanyon, C. F. Roos, and A. J. Daley, Entanglement Growth in Quench Dynamics with Variable Range Interactions, Phys. Rev. X 3, 031015 (2013). 2160-3308 10.1103/PhysRevX.3.031015
A. S. Buyskikh, M. Fagotti, J. Schachenmayer, F. Essler, and A. J. Daley, Entanglement growth and correlation spreading with variable-range interactions in spin and fermionic tunneling models, Phys. Rev. A 93, 053620 (2016). 2469-9926 10.1103/PhysRevA.93.053620
J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pizorn, H. Verschelde, and F. Verstraete, Time-Dependent Variational Principle for Quantum Lattices, Phys. Rev. Lett. 107, 070601 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.107.070601
J. Haegeman, C. Lubich, I. Oseledets, B. Vandereycken, and F. Verstraete, Unifying time evolution and optimization with matrix product states, Phys. Rev. B 94, 165116 (2016). 2469-9950 10.1103/PhysRevB.94.165116
V. Zauner-Stauber, L. Vanderstraeten, M. T. Fishman, F. Verstraete, and J. Haegeman, Variational optimization algorithms for uniform matrix product states, Phys. Rev. B 97, 045145 (2018). 2469-9950 10.1103/PhysRevB.97.045145
H. N. Phien, G. Vidal, and I. P. McCulloch, Infinite boundary conditions for matrix product state calculations, Phys. Rev. B 86, 245107 (2012). PRBMDO 1098-0121 10.1103/PhysRevB.86.245107
F. Schwarz, M. Goldstein, A. Dorda, E. Arrigoni, A. Weichselbaum, and J. von Delft, Lindblad-driven discretized leads for non-equilibrium steady-state transport in quantum impurity models: Recovering the continuum limit, Phys. Rev. B 94, 155142 (2016). 2469-9950 10.1103/PhysRevB.94.155142
E. Mascarenhas, Research data for "Nonreciprocal Quantum Transport at Junctions of Structured Leads," University of Strathclyde, doi: 10.15129/1a689315-46ec-4487-be26-672f2e221fea (2019).
H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, UK, 2010).