[en] Inspired by the microscopic control over dissipative processes in quantum optics and cold atoms, we develop an open-system framework to study dissipative control of transport in strongly interacting fermionic systems, relevant for both solid-state and cold-atom experiments. We show how subgap currents exhibiting multiple Andreev reflections-the stimulated transport of electrons in the presence of Cooper pairs-can be controlled via engineering of superconducting leads or superfluid atomic gases. Our approach incorporates dissipation within the channel, which is naturally occurring and can be engineered in cold gas experiments. This opens opportunities for engineering many phenomena with transport in strongly interacting systems. As examples, we consider particle loss and dephasing, and note different behavior for currents with different microscopic origin. We also show how to induce nonreciprocal electron and Cooper-pair currents.
Disciplines :
Physics
Author, co-author :
Damanet, François ; Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
Mascarenhas, Eduardo
Pekker, David
Daley, Andrew J.
Language :
English
Title :
Controlling Quantum Transport via Dissipation Engineering.
Publication date :
2019
Journal title :
Physical Review Letters
ISSN :
0031-9007
eISSN :
1079-7114
Publisher :
American Physical Society, New York, United States - New York
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
M. Müller, S. Diehl, G. Pupillo, and P. Zoller, Engineered open systems and quantum simulations with atoms and ions, Adv. At. Mol. Opt. Phys. 61, 1 (2012). AAMPE9 1049-250X 10.1016/B978-0-12-396482-3.00001-6
A. J. Daley, Quantum trajectories and open many-body quantum systems, Adv. Phys. 63, 77 (2014). ADPHAH 0001-8732 10.1080/00018732.2014.933502
H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, England, 2009).
C. Gardiner and P. Zoller, The Quantum World of Ultra-Cold Atoms and Light Book II: The Physics of Quantum-Optical Devices, 1st ed. (Imperial College Press, London, 2015).
H. J. Metcalf and P. var der Straten, Laser Cooling and Trapping (Springer, Berlin, 2001).
I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008). RMPHAT 0034-6861 10.1103/RevModPhys.80.885
I. Bloch, J. Dalibard, and S. Nascimbène, Quantum simulations with ultracold quantum gases, Nat. Phys. 8, 267 (2012). NPAHAX 1745-2473 10.1038/nphys2259
C. W. J. Beenakker and H. Van Houten, Quantum transport in semiconductor nanostructures, Solid State Phys. 44, 1 (1991). SSPHAE 0081-1947 10.1016/S0081-1947(08)60091-0
S. Krinner, D. Stadler, D. Husmann, J.-P. Brantut, and T. Esslinger, Observation of quantized conductance in neutral matter, Nature (London) 517, 64 (2015). NATUAS 0028-0836 10.1038/nature14049
S. Krinner, T. Esslinger, and J.-P. Brantut, Two-terminal transport measurements with cold atoms, J. Phys. Condens. Matter 29, 343003 (2017). JCOMEL 0953-8984 10.1088/1361-648X/aa74a1
D. Husmann, S. Uchino, S. Krinner, M. Lebrat, T. Giamarchi, T. Esslinger, and J.-P. Brantut, Connecting strongly correlated superfluids by a quantum point contact, Science 350, 1498 (2015). SCIEAS 0036-8075 10.1126/science.aac9584
M. Lebrat, P. Grišins, D. Husmann, S. Häusler, L. Corman, T. Giamarchi, J.-P. Brantut, and T. Esslinger, Band and Correlated Insulators of Cold Fermions in a Mesoscopic Lattice, Phys. Rev. X 8, 011053 (2018). PRXHAE 2160-3308 10.1103/PhysRevX.8.011053
S. De Franceschi, L. Kouwenhoven, C. Schönenberger, and W. Wernsdorfer, Hybrid superconductor-quantum dot devices, Nat. Nanotechnol. 5, 703 (2010). NNAABX 1748-3387 10.1038/nnano.2010.173
L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker, G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller, Majorana Fermions in Equilibrium and in Driven Cold-Atom Quantum Wires, Phys. Rev. Lett. 106, 220402 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.106.220402
A. Andreev, The Thermal Conductivity of the Intermediate State in Superconductors, Sov. Phys. JETP 19, 1228 (1964). SPHJAR 0038-5646
C. Beenakker, Random-matrix theory of quantum transport, Rev. Mod. Phys. 69, 731 (1997). RMPHAT 0034-6861 10.1103/RevModPhys.69.731
A. Martin-Rodero and A. Levy Yeyati, Josephson and Andreev transport through quantum dots, Adv. Phys. 60, 899 (2011). ADPHAH 0001-8732 10.1080/00018732.2011.624266
M. Octavio, M. Tinkham, G. E. Blonder, and T. M. Klapwijk, Subharmonic energy-gap structure in superconducting constriction, Phys. Rev. B 27, 6739 (1983). PRBMDO 0163-1829 10.1103/PhysRevB.27.6739
J-D. Pillet, C. H. L. Quay, P. Morfin, C. Bena, A. Levy Yeyati, and P. Joyez, Andreev bound states in supercurrent-carrying carbon nanotubes revealed, Nat. Phys. 6, 965 (2010). NPAHAX 1745-2473 10.1038/nphys1811
M. R. Buitelaar, W. Belzig, T. Nussbaumer, B. Babic, C. Bruder, and C. Schönenberger, Multiple Andreev Reflections in a Carbon Nanotube Quantum Dot, Phys. Rev. Lett. 91, 057005 (2003). PRLTAO 0031-9007 10.1103/PhysRevLett.91.057005
T. Dirks, T. L. Hughes, S. Lal, B. Uchoa, Y.-F. Chen, C. Chialvo, P. M. Goldbart, and N. Mason, Transport through Andreev bound states in a graphene quantum dot, Nat. Phys. 7, 386 (2011). NPAHAX 1745-2473 10.1038/nphys1911
P. San-Jose, J. Cayao, E. Prada, and R. Aguado, Multiple Andreev reflection and critical current in topological superconducting nanowire junctions, New J. Phys. 15, 075019 (2013). NJOPFM 1367-2630 10.1088/1367-2630/15/7/075019
A. Levy Yeyati, J. C. Cuevas, A. López-Dávalos, and A. Martin-Rodero, Resonant tunneling through a small quantum dot coupled to superconducting leads, Phys. Rev. B 55, R6137 (1997). PRBMDO 0163-1829 10.1103/PhysRevB.55.R6137
A. Zazunov, R. Egger, C. Mora, and T. Martin, Superconducting transport through a vibrating molecule, Phys. Rev. B 73, 214501 (2006). PRBMDO 1098-0121 10.1103/PhysRevB.73.214501
L. Dell' Anna, A. Zazunov, and R. Egger, Superconducting nonequilibrium transport through a weakly interacting quantum dot, Phys. Rev. B 77, 104525 (2008). PRBMDO 1098-0121 10.1103/PhysRevB.77.104525
K. Kang, Transport through an interacting quantum dot coupled to two superconducting leads, Phys. Rev. B 57, 11891 (1998). PRBMDO 0163-1829 10.1103/PhysRevB.57.11891
C. P. Search, S. Pötting, W. Zhang, and P. Meystre, Input-output theory for fermions in an atom cavity, Phys. Rev. A 66, 043616 (2002). PLRAAN 1050-2947 10.1103/PhysRevA.66.043616
C. W. Gardiner, Input and output in damped quantum systems III: Formulation of damped systems driven by fermions fields, Opt. Commun. 243, 57 (2004). OPCOB8 0030-4018 10.1016/j.optcom.2004.05.061
C. W. Gardiner and P. Zoller, Quantum Noise, 3rd ed. (Springer, Berlin, 2004).
N. Zhao, J.-L. Zhu, R.-B. Liu, and C. P. Sun, Quantum noise theory for quantum transport through nanostructures, New J. Phys. 13, 013005 (2011). NJOPFM 1367-2630 10.1088/1367-2630/13/1/013005
H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2006).
D. S. Kosov, T. Prosen, and B. Žunkovič, A Markovian kinetic equation approach to electron transport through a quantum dot coupled to superconducting leads, J. Phys. Condens. Matter 25, 075702 (2013). JCOMEL 0953-8984 10.1088/0953-8984/25/7/075702
S. Pfaller, A. Donarini, and M. Grifoni, Subgap features due to quasiparticle tunneling in quantum dots coupled to superconducting leads, Phys. Rev. B 87, 155439 (2013). PRBMDO 1098-0121 10.1103/PhysRevB.87.155439
Y. Yan, Z. Lü, and H. Zheng, Resonance fluorescence of strongly driven two-level system coupled to multiple dissipative reservoirs, Ann. Phys. (Amsterdam) 371, 159 (2016). APNYA6 0003-4916 10.1016/j.aop.2016.04.006
S. Kohler, T. Dittrich, and P. Hänggi, Floquet-Markovian description of the parametrically driven, dissipative harmonic quantum oscillator, Phys. Rev. E 55, 300 (1997). PLEEE8 1063-651X 10.1103/PhysRevE.55.300
R. Graham and R. Hübner, Generalized quasi-energies and Floquet states for a dissipative systems, Ann. Phys. (N.Y.) 234, 300 (1994). APNYA6 0003-4916 10.1006/aphy.1994.1083
R. Blattmann, P. Hänggi, and S. Kohler, Qubit interference at avoided crossings: The role of driving shape and bath coupling, Phys. Rev. A 91, 042109 (2015). PLRAAN 1050-2947 10.1103/PhysRevA.91.042109
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.123.180402 for the derivation of the master equation and various technical details, which includes Refs. [17,30-36,39-42].
Z. Su, A. B. Tacla, M. Hocevar, D. Car, S. R. Plissard, E. P. A. M. Bakkers, A. J. Daley, D. Pekker, and S. M. Frolov, Andreev molecules in semiconductor nanowire double quantum dots, Nat. Commun. 8, 585 (2017). NCAOBW 2041-1723 10.1038/s41467-017-00665-7
M. Grifoni and P. Hänggi, Driven quantum tunneling, Phys. Rep. 304, 229 (1998). PRPLCM 0370-1573 10.1016/S0370-1573(98)00022-2
V. I. Yudin, A. V. Taichenachev, and M. Y. Basalaev, Dynamic steady state of periodically driven quantum systems, Phys. Rev. A 93, 013820 (2016). PLRAAN 2469-9926 10.1103/PhysRevA.93.013820
D. Malz and A. Nunnenkamp, Floquet approach to bichromatically driven cavity optomechanical systems, Phys. Rev. A 94, 023803 (2016). PLRAAN 2469-9926 10.1103/PhysRevA.94.023803
R. Delagrange, R. Weil, A. Kasumov, M. Ferrier, H. Bouchiat, and R. Deblock, (Equation presented) Quantum transition in a carbon nanotube Josephson junction: Universal phase dependence and orbital degeneracy, Physica (Amsterdam) 536B, 211 (2018). PHYBE3 0921-4526 10.1016/j.physb.2017.09.034
T. Gericke, P. Wurtz, D. Reitz, T. Langen, and H. Ott, High-resolution scanning electron microscopy of an ultracold quantum gas, Nat. Phys. 4, 949 (2008). NPAHAX 1745-2473 10.1038/nphys1102
C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schausz, T. Fukuhara, I. Bloch, and S. Kuhr, Single-spin addressing in an atomic Mott insulator, Nature (London) 471, 319 (2011). NATUAS 0028-0836 10.1038/nature09827
W. S. Bakr, J. I. Gillen, A. Peng, S. Folling, and M. Greiner, A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice, Nature (London) 462, 74 (2009). NATUAS 0028-0836 10.1038/nature08482
J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr, Single-atom-resolved fluorescence imaging of an atomic Mott insulator, Nature (London) 467, 68 (2010). NATUAS 0028-0836 10.1038/nature09378
H. P. Lüschen, P. Bordia, S. S. Hodgman, M. Schreiber, S. Sarkar, A. J. Daley, M. H. Fischer, E. Altman, I. Bloch, and U. Schneider, Signatures of Many-Body Localization in a Controlled Open Quantum System, Phys. Rev. X 7, 011034 (2017). PRXHAE 2160-3308 10.1103/PhysRevX.7.011034
S. Sarkar, S. Langer, J. Schachenmayer, and A. J. Daley, Light scattering and dissipative dynamics of many fermionic atoms in an optical lattice, Phys. Rev. A 90, 023618 (2014). PLRAAN 1050-2947 10.1103/PhysRevA.90.023618
H. Pichler, A. J. Daley, and P. Zoller, Nonequilibrium dynamics of bosonic atoms in optical lattices: Decoherence of many-body states due to spontaneous emission, Phys. Rev. A 82, 063605 (2010). PLRAAN 1050-2947 10.1103/PhysRevA.82.063605
E. P. L. van Nieuwenburg, J. Y. Malo, A. J. Daley, and M. H. Fischer, Dynamics of many-body localization in the presence of particle loss, Quantum Sci. Technol. 3, 01LT02 (2017). 10.1088/2058-9565/aa9a02
Z. Lenarcic and T. Prosen, Exact asymptotics of the current in boundary-driven dissipative quantum chains in large external fields, Phys. Rev. E 91, 030103(R) (2015). PRESCM 1539-3755 10.1103/PhysRevE.91.030103
G. T. Landi, E. Novais, M. J. de Oliveira, and D. Karevski, Flux rectification in the quantum (Equation presented) chain, Phys. Rev. E 90, 042142 (2014). PRESCM 1539-3755 10.1103/PhysRevE.90.042142
L. Schuab, E. Pereira, and G. T. Landi, Energy rectification in quantum graded spin chains: Analysis of the (Equation presented) model, Phys. Rev. E 94, 042122 (2016). PRESCM 2470-0045 10.1103/PhysRevE.94.042122
E. Pereira, Rectification and one-way street for the energy current in boundary-driven asymmetric quantum spin chains, Phys. Rev. E 95, 030104(R) (2017). PRESCM 2470-0045 10.1103/PhysRevE.95.030104
E. Pereira, Requisite ingredients for thermal rectification, Phys. Rev. E 96, 012114 (2017). PRESCM 2470-0045 10.1103/PhysRevE.96.012114
V. Balachandran, G. Benenti, E. Pereira, G. Casati, and D. Poletti, Perfect Diode in Quantum Spin Chains, Phys. Rev. Lett. 120, 200603 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.120.200603
E. Pereira, Heat, work, and energy currents in the boundary-driven (Equation presented) spin chain, Phys. Rev. E 97, 022115 (2018). PRESCM 2470-0045 10.1103/PhysRevE.97.022115
T. Werlang, M. A. Marchiori, M. F. Cornelio, and D. Valente, Optimal rectification in the ultrastrong coupling regime, Phys. Rev. E 89, 062109 (2014). PRESCM 1539-3755 10.1103/PhysRevE.89.062109
E. Mascarenhas, F. Damanet, S. Flannigan, L. Tagliacozzo, A. J. Daley, J. Goold, and I. de Vega, Nonreciprocal quantum transport at junctions of structured leads, Phys. Rev. B. 99, 245134 (2019). 10.1103/PhysRevB.99.245134
D. Malz and A. Nunnenkamp, Current rectification in a double quantum dot through fermionic reservoir engineering, Phys. Rev. B 97, 165308 (2018). PRBMDO 2469-9950 10.1103/PhysRevB.97.165308
K. Ono, D. G. Austing, Y. Tokura, and S. Tarucha, Current rectification by Pauli exclusion in a weakly coupled double quantum dot system, Science 297, 1313 (2002). SCIEAS 0036-8075 10.1126/science.1070958
A. C. Johnson, J. R. Petta, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Singlet-triplet spin blockade and charge sensing in a few-electron double quantum dot, Phys. Rev. B 72, 165308 (2005). PRBMDO 1098-0121 10.1103/PhysRevB.72.165308
G. Tang, L. Zhang, and J. Wang, Thermal rectification in a double quantum dots system with a polaron effect, Phys. Rev. B 97, 224311 (2018). PRBMDO 2469-9950 10.1103/PhysRevB.97.224311
R. Scheibner, M. König, D. Reuter, A. D. Wieck, C. Gould, H. Buhmannn, and L. W. Molenkamp, Quantum dot as thermal rectifier, New J. Phys. 10, 083016 (2008). NJOPFM 1367-2630 10.1088/1367-2630/10/8/083016
A. Eichler, M. Weiss, S. Oberholzer, C. Schönenberger, A. Levy Yeyati, J. C. Cuevas, and A. Martín-Rodero, Even-Odd Effect in Andreev Transport through a Carbon Nanotube Quantum Dot, Phys. Rev. Lett. 99, 126602 (2007). PRLTAO 0031-9007 10.1103/PhysRevLett.99.126602
S. Uchino, M. Ueda, and J.-P. Brantut, Universal noise in continuous transport measurements of interacting fermions, Phys. Rev. A 98, 063619 (2018). PLRAAN 2469-9926 10.1103/PhysRevA.98.063619
M. Benito and G. Platero, Floquet Majorana fermions in superconducting quantum dots, Physica (Amsterdam) 74E, 608 (2015). PELNFM 1386-9477 10.1016/j.physe.2015.08.030
Y. Li, A. Kundu, F. Zhong, and B. Seradjeh, Tunable Floquet Majorana fermions in driven coupled quantum dots, Phys. Rev. B 90, 121401(R) (2014). PRBMDO 1098-0121 10.1103/PhysRevB.90.121401
R. Sánchez, B. Sothmann, A. N. Jordan, and M. Büttiker, Correlations of heat and charge currents in quantum-dot thermoelectric engines, New J. Phys. 15, 125001 (2013). NJOPFM 1367-2630 10.1088/1367-2630/15/12/125001
J. P. Pekola, Towards quantum thermodynamics in electronic circuits, Nat. Phys. 11, 118 (2015). NPAHAX 1745-2473 10.1038/nphys3169
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.