[en] An extensive survey of groundwater quality was performed at the regional scale in peri-urban and industrial contexts of the Walloon Region (Belgium). To this end, 243 sampling locations from 8 areas located in different geological contexts and different peri-urban areas of the region were sampled outside pollution hotspots related to contaminated sites. Each groundwater sample was analyzed for 19 inorganic trace elements, 59 organic micro-pollutants and 8 major and minor elements. Five physico-chemical parameters were measured in the field, at the time of sampling to determine the environmental conditions prevailing in groundwater. Existing groundwater chemical data available outside such peri-urban and industrial areas were also compiled from existing groundwater quality databases for comparison. Most of the organic and inorganic pollutants are detected and their levels of occurrence are described statistically. Cumulative distribution function plots allow comparing the distributions of inorganic trace elements in and outside the urbanized and industrialized areas and among the different prevailing geological contexts. Two indicators are introduced, one quantifying the impact on inorganic trace elements of diffuse pollution in urban and industrial areas, the other reflecting the influence of lithology on concentrations in groundwater. Results show that the composition of groundwater is altered in peri-urban and industrial areas with increased concentrations for several organic pollutants and for most inorganic trace elements. However, the results clearly indicate that for the inorganic trace elements, anthropogenic influence is not limited to increased discharge of pollutants in the urban and industrial areas but also to significant changes in environmental conditions, with more reducing and acidic conditions observed in groundwater. The influence of lithology is also marked in the data set. From a more pragmatic point of view, the data set has been also used to derive upper limits of pollutant background concentrations to be used in decision-making related to the management of contaminated groundwater in urban and industrial environments in the Walloon Region.
Aslam, R.A., Shrestha, S., Pandey, V.P., Groundwater vulnerability to climate change: a review of the assessment methodology. Sci. Total Environ. 612 (2018), 853–875.
Bailey, R.T., Hunter, W.J., Gates, T.K., The influence of nitrate on selenium in irrigated agricultural groundwater systems. J. Environ. Qual. 41 (2012), 783–792, 10.2134/jeq2011.0311.
Barth, S., Application of boron isotopes for tracing sources of anthropogenic contamination in groundwater. Water Res. 32 (1998), 685–690, 10.1016/S0043-1354(97)00251-0.
Boveroux, P., Gilissen, P., Thoreau, F.-L., 50 ans d'histoire économique de la Wallonie. 2004.
Cary, L., Benabderraziq, H., Elkhattabi, J., Gourcy, L., Parmentier, M., Picot, J., Khaska, M., Laurent, A., Négrel, P., Tracking selenium in the chalk aquifer of northern France: Sr isotope constraints. Appl. Geochem. 48 (2014), 70–82, 10.1016/j.apgeochem.2014.07.014.
Colombo, L., Alberti, L., Azzellino, A., Bellotti, M., Multi-methodological integrated approach for the assessment of diffuse pollution background levels (DPBLs) in functional urban areas: The pce case in milano NW sector. Front. Environ. Sci. 8 (2020), 1–17 art. no. 525469.
Dassargues, A., Walraevens, K., Aquifères et Eaux Souterraines en Belgique - Watervoerende Lagen en Grondwater in Belgïe. 2014, Academia Press, Gent, Belgium, 456 http://hdl.handle.net/2268/169525.
Dassargues, A., Wildemeersch, S., Rentier, C., Graviers de la Meuse (alluvions modernes et anciennes) en Wallonie. Dassargues, A., Walraevens, K., (eds.) Watervoerende Lagen En Grondwater in Belgïe / Aquifères et Eaux Souterraines En Belgique, 2014, Academia Press, Gent, 37–46.
Debbaut, V., Bouezmarni, M., Aquifères des formations du Jurrassique et du Trias en Lorraine belge. Dassargues, A., Walraevens, K., (eds.) Watervoerende Lagen En Grondwater in Belgïe / Aquifères et Eaux Souterraines En Belgique, 2014, Academia Press, Gent, 203–215.
EC, Directive 2006/118/EC (Groundwater Daughter Directive) of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. 2006.
EC, Technical report 2011/056 on groundwater dependent terrestrial ecosystems. Technical report Nb.6, Common Implementation Strategy for the Water Framework Directive (2000/60/EC). 2011.
EC, Technical report 2015/093 on groundwater associated aquatic ecosystems. Technical report Nb.9, Common Implementation Strategy for the Water Framework Directive (2000/60/EC), 2015.
Ghosh, N.C., Geogenic contamination and technologies for safe drinking water supply. Water and Sanitation in the New Millennium, 2017, Springer, New Delhi, 81–95.
Grützmacher, G., Kumar, P.S., Rustler, M., Hannappel, S., Sauer, U., Geogenic groundwater contamination—definition, occurrence and relevance for drinking water production. Zbl Geol Paläont Teil I 1 (2013), 69–75.
Hakoun, V., Orban, P., Dassargues, A., Brouyère, S., Factors Controlling Temporal and Spatial Patterns of Multiple Pesticide Compounds in Groundwater (Hesbaye Chalk Aquifer, Belgium). 2017, Accepted for publication in Environmental Pollution January.
Hellauer, K., Karakurt, S., Sperlich, A., Burke, V., Massmann, G., Hübner, U., Drewes, J.E., Establishing sequential managed aquifer recharge technology (SMART) for enhanced removal of trace organic chemicals: experiences from field studies in Berlin, Germany. J. Hydrol. 563 (2018), 1161–1168.
Hem, J.D., Study and Interpretation of the Chemical Characteristics of Natural Water: United States Geological Survey Water-Supply Paper 2254. 1991, Scientific Publishers.
Howard, K.W.F., Urban groundwater issues—an introduction. Current Problems of Hydrogeology in urban Areas, Urban Agglomerates and Industrial Centres, 2002, Springer, Dordrecht, 1–15.
Jamin, P., Dollé, F., Chisala, B., Orban, P., Popescu, I.C., Hérivaux, C., Dassargues, A., Brouyère, S., A regional flux-based risk assessment approach for multiple contaminated sites on groundwater bodies. J. Contam. Hydrol. 127:1–4 (2012), 65–75, 10.1016/j.jconhyd.2011.07.001.
Jurado, A., Borges, A.V., Pujades, E., Briers, P., Nikolenko, O., Dassargues, A., Brouyère, S., Dynamics of greenhouse gases in the river-groundwater interface in gaining river stretch (Triffoy catchment, Belgium). Hydrogeol. J. 26:8 (2018), 2739–2751, 10.1007/s10040-018-1834-y.
Kendall, M.G., A new measure of rank correlation. Biometrika 30 (1938), 81–93.
Lazareva, O., Druschel, G., Pichler, T., Understanding arsenic behavior in carbonate aquifers: implications for aquifer storage and recovery (ASR). Appl. Geochem. 52 (2015), 57–66, 10.1016/j.apgeochem.2014.11.006.
Mast, M.A., Mills, T.J., Paschke, S.S., Keith, G., Linard, J.I., Mobilization of selenium from the Mancos shale and associated soils in the lower Uncompahgre River basin. Colorado. Appl. Geochem. 48 (2014), 16–27, 10.1016/j.apgeochem.2014.06.024.
Meharg, A.A., Scringeour, C., Hossain, S.A., Fuller, H., Code position of organic carbon and arsenic in Bengal Delta aquifers. Environ. Sci. Technol. 40:16 (2006), 4928–4935.
Minnig, M., Moeck, C., Radny, D., Schirmer, M., Impact of urbanization on groundwater recharge rates in Dübendorf, Switzerland. J. Hydrol. 563 (2017), 1135–1146, 10.1016/j.jhydrol.2017.09.058.
Müller, D., D18: Final proposal for a methodology to set up groundwater treshold values in Europe. BRIDGE Background cRiteria for the IDentification of Groundwater thrEsholds, 2006.
Navarro, A., Carbonell, M., Evaluation of groundwater contamination beneath an urban environment: the Besòs river basin (Barcelona, Spain). J. Environ. Manag. 85 (2007), 259–269, 10.1016/j.jenvman.2006.08.021.
Nikolenko, O., Orban, P., Jurado, A., Knöller, K., Robert, T., Jamin, P., Borges, A.V., Brouyère, S., Dynamics of greenhouse gases in groundwater: hydrogeological, hydrogeochemical and land use controls. Appl. Geochem. 105 (2019), 31–44, 10.1016/j.apgeochem.2019.04.009.
Orban, P., Brouyère, S., Batlle-Aguilar, J., Couturier, J., Goderniaux, P., Leroy, M., Maloszewski, P., Dassargues, A., Regional transport modelling for nitrate trend assessment and forecasting in a chalk aquifer. J. Contam. Hydrol. 118 (2010), 79–93, 10.1016/j.jconhyd.2010.08.008.
Pauwels, H., Pettenati, M., Greffié, C., The combined effect of abandoned mines and agriculture on groundwater chemistry. J. Contam. Hydrol. 115 (2010), 64–78, 10.1016/j.jconhyd.2010.04.003.
Piper, A.M., A graphic procedure in the geochemical interpretation of water-analyses. EOS Trans. Am. Geophys. Union 25 (1944), 914–928, 10.1029/TR025i006p00914.
Pollicino, L.C., Colombo, L., Alberti, L., Masetti, M., PCE point source apportionment using a GIS-based statistical technique combined with stochastic modelling. Sci. Total Environ., 750, 2021, 142366.
Reimann, C., Garrett, R.G., Geochemical background—concept and reality. Sci. Total Environ. 350 (2005), 12–27, 10.1016/j.scitotenv.2005.01.047.
Reimann, C., Filzmoser, P., Garrett, R.G., Background and threshold: critical comparison of methods of determination. Sci. Total Environ. 346 (2005), 1–16, 10.1016/j.scitotenv.2004.11.023.
Rivett, M.O., Lerner, D.N., Lloyd, J.W., Clark, L., Organic contamination of the Birmingham aquifer, U.K. J. Hydrol. 113 (1990), 307–323, 10.1016/0022-1694(90)90181-V.
Rivett, M.O., Turner, R.J., Glibbery, P., Cuthbert, M.O., The legacy of chlorinated solvents in the Birmingham aquifer, UK: observations spanning three decades and the challenge of future urban groundwater development. J. Contam. Hydrol. 140–141 (2012), 107–123, 10.1016/j.jconhyd.2012.08.006.
Rorive, A., Goderniaux, P., L'aquifère du Crétacé de la vallée de la Haine. Dassargues, A., Walraevens, K., (eds.) Watervoerende Lagen En Grondwater in Belgïe / Aquifères et Eaux Souterraines En Belgique, 2014, Academia Press, Gent, 183–190.
Ruthy, I., Biron, J.-P., Dassargues, A., Calcaires et grès des bassins de la Vesdre et de la Gueule. Dassargues, A., Walraevens, K., (eds.) Watervoerende Lagen En Grondwater in Belgïe / Aquifères et Eaux Souterraines En Belgique, 2014, Academia Press, Gent, 245–256.
Schirmer, M., Leschik, S., Musolff, A., Current research in urban hydrogeology – a review. Adv. Water Resour. 51 (2013), 280–291, 10.1016/j.advwatres.2012.06.015.
Serra-Roig, M.P., Jurado, A., Díaz-Cruz, M.S., Vázquez-Suñé, E., Pujades, E., Barceló, D., Occurrence, fate and risk assessment of personal care products in river–groundwater interface. Sci. Total Environ. 568 (2016), 829–837.
Shanahan, P., Groundwater in the urban environment. The Water Environment of Cities, 2009, Springer, Boston, MA, 29–48.
Shand, P., Edmunds, W.M., Lawrence, A.R., Smedley, P.L., Burke, S., The Natural (Baseline) Quality of Groundwater in England and Wales. 2007, Nottingham, British Geological Survey.
Shepherd, K.A., Ellis, P.A., Rivett, M.O., Integrated understanding of urban land, groundwater, baseflow and surface-water quality—the City of Birmingham, UK. Sci. Total Environ. 360 (2006), 180–195, 10.1016/j.scitotenv.2005.08.052.
Sinclair, A.J., Selection of threshold values in geochemical data using probability graphs. J. Geochem. Explor., 1974, 10.1016/0375-6742(74)90030-2.
Sorichetta, A., Masetti, M., Ballabio, C., Sterlacchini, S., Aquifer nitrate vulnerability assessment using positive and negative weights of evidence methods, Milan, Italy (2012). Comput. Geosci. 48 (2012), 199–210.
SPW - DGO3, Etat des nappes d'eau souterraine de Wallonie. URL http://environnement.wallonie.be/de/eso/atlas/, 2014.
SPW - DGO3 - DGARNE, Carte hydrogéologique de Wallonie [WWW Document]. URL http://environnement.wallonie.be/cartosig/cartehydrogeo/index.htm, 2015.
SPW - DGO3 - DGARNE, La Carte d'Occupation du Sol de Wallonie (COSW) [WWW Document]. URL http://www.wallonie.be/fr/outils/carte-doccupation-des-sols-de-wallonie, 2015.
SPW-DGO3, Etat des nappes d'eau souterraine de Wallonie. Edition: Service public de Wallonie, DGO 3 (DGARNE), Belgique. Dépôt légal D/2017/11802/09. 2016.
Taylor, R.G., Cronin, A.A., Lerner, D.N., Tellam, J.H., Bottrell, S.H., Rueedi, J., Barrett, M.H., Hydrochemical evidence of the depth of penetration of anthropogenic recharge in sandstone aquifers underlying two mature cities in the UK. Appl. Geochem. 21 (2006), 1570–1592, 10.1016/j.apgeochem.2006.06.015.
Vázquez-Suñé, E., Carrera, J., Tubau, I., Sánchez-Vila, X., Soler, A., An approach to identify urban groundwater recharge. Hydrol. Earth Syst. Sci., 14(2085–2097), 2010, 2010, 10.5194/hess-14-2085-2010.
WHO, Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum. 2017, 631 ISBN 978–92–4-154995-0.
Wright, W.G., Oxidation and mobilization of selenium by nitrate in irrigation drainage. J. Environ. Qual. 28 (1999), 1182–1187, 10.2134/jeq1999.00472425002800040019x.
Zhang, S., Howard, K., Otto, C., Ritchie, V., Sililo, O.T.N., Appleyard, S., Sources, types, characteristics and investigation of urban groundwater pollutants. Lerner, D.N., (eds.) Urban Groundwater Pollution, 2004, A. A. Balkema, Netherlands IAH Publication, 53–107.