[en] We investigate the scope of the organocatalyzed step-growth copolymerization of CO2-sourced exovinylene bicyclic carbonates with bio-based diols into polycarbonates. A series of regioregular poly(oxo-carbonate)s were prepared from sugar- (1,4-butanediol and isosorbide) or lignin-derived (1,4-benzenedimethanol and 1,4-cyclohexanediol) diols at 25 °C with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as a catalyst, and their defect-free structure was confirmed by nuclear magnetic resonance spectroscopy studies. Their characterization by differential scanning calorimetry and wide-angle X-ray scattering showed that most of them were able to crystallize. When the polymerizations were carried out at 80 °C, some structural defects were introduced within the polycarbonate chains, which limited the polymer molar mass. Model reactions were carried out to understand the influence of the structure of alcohols, the temperature (25 or 80 °C), and the use of DBU on the rate of alcoholysis of the carbonate and on the product/linkage selectivity. A full mechanistic understanding was given by means of static- and dynamic-based density functional theory (DFT) calculations showing the determining role of DBU in the stability of intermediates, and its important role in the rate-determining steps is revealed. Furthermore, the origin of side reactions observed at 80 °C was discussed and rationalized by DFT modeling. As impressive diversified bio-based diols are accessible on a large scale and at low cost, this process of valorization of carbon dioxide gives new perspectives on the sustainable production of bioplastics under mild conditions.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM) CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Siragusa, Fabiana ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Van Den Broeck, Elias; University of Ghent, Center for Molecular Modeling, Belgium
Ocando, Connie; University of the Basque Country, POLYMAT, Donostia/SanSebastian, Spain
Müller, Alenjandro J.; University of the Basque Country, POLYMAT, Donostia/SanSebastian, Spain
De Smet, Gilles; University of Antwerp ; Department of Chemistry, Organic Synthesis Division, Belgium
Maes, Bert U. W.; University of Antwerp ; Department of Chemistry, Organic Synthesis Division, Belgium
De Winter, Julien; University of Mons (UMons), Mass Spectrometry Research Group, Interdisciplinary Center of Mass Spectrometry (CISMa), Belgium
Van Speybroeck, Véronique; University of Ghent, Center for Molecular Modeling, Belgium
Grignard, Bruno ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Detrembleur, Christophe ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Language :
English
Title :
Access to biorenewable and CO2‑based polycarbonates from exovinylene cyclic carbonates
Publication date :
01 February 2021
Journal title :
ACS Sustainable Chemistry and Engineering
eISSN :
2168-0485
Publisher :
American Chemical Society, Washington, United States - District of Columbia
Volume :
9
Issue :
4
Pages :
1714-1728
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen The "Excellence of Science" (EOS) program
Fukuoka, S.; Tojo, M.; Hachiya, H.; Aminaka, M.; Hasegawa, K. Green and Sustainable Chemistry in Practice: Development and Industrialization of a Novel Process for Polycarbonate Production from CO2without Using Phosgene. Polym. J. 2007, 39, 91-114, 10.1295/polymj.pj2006140
Kim, W. B.; Joshi, U. A.; Lee, J. S. Making Polycarbonates without Employing Phosgene: An Overview on Catalytic Chemistry of Intermediate and Precursor Syntheses for Polycarbonate. Ind. Eng. Chem. Res. 2004, 43, 1897-1914, 10.1021/ie034004z
Fukuoka, S.; Fukawa, I.; Adachi, T.; Fujita, H.; Sugiyama, N.; Sawa, T. Industrialization and Expansion of Green Sustainable Chemical Process: A Review of Non-Phosgene Polycarbonate from CO2. Org. Process Res. Dev. 2019, 23, 145-169, 10.1021/acs.oprd.8b00391
Grignard, B.; Gennen, S.; Jérôme, C.; Kleij, A. W.; Detrembleur, C. Advances in the Use of CO2as a Renewable Feedstock for the Synthesis of Polymers. Chem. Soc. Rev. 2019, 48, 4466-4514, 10.1039/c9cs00047j
Tamura, M.; Ito, K.; Honda, M.; Nakagawa, Y.; Sugimoto, H.; Tomishige, K. Direct Copolymerization of CO2and Diols. Sci. Rep. 2016, 6, 24038, 10.1038/srep24038
Huang, J.; Worch, J. C.; Dove, A. P.; Coulembier, O. Update and Challenges in Carbon Dioxide-Based Polycarbonate Synthesis. ChemSusChem 2020, 13, 469-487, 10.1002/cssc.201902719
Schutyser, W.; Renders, T.; Van Den Bosch, S.; Koelewijn, S.-F.; Beckham, G. T.; Sels, B. F. Chemicals from Lignin: An Interplay of Lignocellulose Fractionation, Depolymerisation, and Upgrading. Chem. Soc. Rev. 2018, 47, 852-908, 10.1039/c7cs00566k
Sun, Z.; Fridrich, B.; De Santi, A.; Elangovan, S.; Barta, K. Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. Chem. Rev. 2018, 118, 614-678, 10.1021/acs.chemrev.7b00588
Gong, Z.-J.; Li, Y.-R.; Wu, H.-L.; Lin, S. D.; Yu, W.-Y. Direct Copolymerization of Carbon Dioxide and 1,4-Butanediol Enhanced by Ceria Nanorod Catalyst. Appl. Catal., B 2020, 265, 118524-118536, 10.1016/j.apcatb.2019.118524
Jiang, Z.; Chen, L.; Wenchun, X.; Gross, R. A. Controlled Lipase-Catalyzed Synthesis of Poly(Hexamethylene Carbonate). Macromolecules 2007, 40, 7934-7943, 10.1021/ma070665m
Meabe, L.; Lago, N.; Rubatat, L.; Li, C.; Müller, A. J.; Sardon, H.; Armand, M.; Mecerreyes, D. Polycondensation as a Versatile Synthetic Route to Aliphatic Polycarbonates for Solid Polymer Electrolytes. Electrochim. Acta 2017, 237, 259-266, 10.1016/j.electacta.2017.03.217
Sun, J.; Kuckling, D. Synthesis of High-Molecular-Weight Aliphatic Polycarbonates by Organo-Catalysis. Polym. Chem. 2016, 7, 1642-1649, 10.1039/c5py01843a
Naik, P. U.; Refes, K.; Sadaka, F.; Brachais, C.-H.; Boni, G.; Couvercelle, J.-P.; Picquet, M.; Plasseraud, L. Organo-Catalyzed Synthesis of Aliphatic Polycarbonates in Solvent-Free Conditions. Polym. Chem. 2012, 3, 1475-1480, 10.1039/c2py20056b
Gennen, S.; Grignard, B.; Tassaing, T.; Jérôme, C.; Detrembleur, C. CO2-Sourced α-Alkylidene Cyclic Carbonates: A Step Forward in the Quest for Functional Regioregular Poly(Urethane)s and Poly(Carbonate)S. Angew. Chem., Int. Ed. 2017, 56, 10394-10398, 10.1002/anie.201704467
Ouhib, F.; Meabe, L.; Mahmoud, A.; Eshraghi, N.; Grignard, B.; Thomassin, J.-M.; Aqil, A.; Boschini, F.; Jérôme, C.; Mecerreyes, D.; Detrembleur, C. CO2-Sourced Polycarbonates as Solid Electrolytes for Room Temperature Operating Lithium Batteries. J. Mater. Chem. A 2019, 7, 9844-9853, 10.1039/c9ta01564g
Habets, T.; Siragusa, F.; Grignard, B.; Detrembleur, C. Advancing the Synthesis of Isocyanate-Free Poly(Oxazolidones)s: Scope and Limitations. Macromolecules 2020, 53, 6396-6408, 10.1021/acs.macromol.0c01231
Ouhib, F.; Grignard, B.; Van Den Broeck, E.; Luxen, A.; Robeyns, K.; Van Speybroeck, V.; Jerome, C.; Detrembleur, C. A Switchable Domino Process for the Construction of Novel CO2-Sourced Sulfur-Containing Building Blocks and Polymers. Angew. Chem., Int. Ed. 2019, 58, 11768-11773, 10.1002/anie.201905969
Dabral, S.; Schaub, T. The Use of Carbon Dioxide (CO2) as a Building Block in Organic Synthesis from an Industrial Perspective. Adv. Synth. Catal. 2019, 361, 223-246, 10.1002/adsc.201801215
Ouhib, F.; Meabe, L.; Mahmoud, A.; Grignard, B.; Thomassin, J.-M.; Boschini, F.; Zhu, H.; Forsyth, M.; Mecerreyes, D.; Detrembleur, C. Influence of the Cyclic versus Linear Carbonate Segments in the Properties and Performance of CO2-Sourced Polymer Electrolytes for Lithium Batteries. ACS Appl. Polym. Mater. 2020, 2, 922-931, 10.1021/acsapm.9b01130
Dabral, S.; Licht, U.; Rudolf, P.; Bollmann, G.; Hashmi, A. S. K.; Schaub, T. Synthesis and Polymerisation of α-Alkylidene Cyclic Carbonates from Carbon Dioxide, Epoxides and the Primary Propargylic Alcohol 1,4-Butynediol. Green Chem. 2020, 22, 1553-1558, 10.1039/c9gc04320a
Tounzoua, C. N.; Grignard, B.; Brege, A.; Jerome, C.; Tassaing, T.; Mereau, R.; Detrembleur, C. A Catalytic Domino Approach toward Oxo-Alkyl Carbonates and Polycarbonates from CO2, Propargylic Alcohols, and (Mono-and Di-)Alcohols. ACS Sustain. Chem. Eng. 2020, 8, 9698-9710, 10.1021/acssuschemeng.0c01787
Kricheldorf, H. R. "Sugar Diols" as Building Blocks of Polycondensates. J. Macromol. Sci., Chem. 1997, 37, 599-631, 10.1080/15321799708009650
Yu, Y.; Pang, C.; Jiang, X.; Yang, Z.; Ma, J.; Gao, H. Copolycarbonates Based on a Bicyclic Diol Derived from Citric Acid and Flexible 1,4-Cyclohexanedimethanol: From Synthesis to Properties. ACS Macro Lett. 2019, 8, 454-459, 10.1021/acsmacrolett.9b00184
Burgard, A.; Burk, M. J.; Osterhout, R.; Van Dien, S.; Yim, H. ScienceDirect Development of a Commercial Scale Process for Production of 1, 4-Butanediol from Sugar. Curr. Opin. Biotechnol. 2016, 42, 118-125, 10.1016/j.copbio.2016.04.016
Grignard, B.; Ngassamtounzoua, C.; Gennen, S.; Gilbert, B.; Méreau, R.; Jerome, C.; Tassaing, T.; Detrembleur, C. Boosting the Catalytic Performance of Organic Salts for the Fast and Selective Synthesis of α-Alkylidene Cyclic Carbonates from Carbon Dioxide and Propargylic Alcohols. ChemCatChem 2018, 10, 2584-2592, 10.1002/cctc.201800063
Ca', N. D.; Gabriele, B.; Ruffolo, G.; Veltri, L.; Zanetta, T.; Costa, M. Effective Guanidine-Catalyzed Synthesis of Carbonate and Carbamate Derivatives from Propargyl Alcohols in Supercritical Carbon Dioxide. Adv. Synth. Catal. 2011, 353, 133-146, 10.1002/adsc.201000607
Zhou, Z.-H.; Song, Q.-W.; Xie, J.-N.; Ma, R.; He, L.-N. Silver(I)-Catalyzed Three-Component Reaction of Propargylic Alcohols, Carbon Dioxide and Monohydric Alcohols: Thermodynamically Feasible Access to β-Oxopropyl Carbonates. Chem.-Asian J. 2016, 11, 2065-2071, 10.1002/asia.201600600
Zhou, H.; Zhang, H.; Mu, S.; Zhang, W.-Z.; Ren, W.-M.; Lu, X.-B. Highly Regio-And Stereoselective Synthesis of Cyclic Carbonates from Biomass-Derived Polyols: Via Organocatalytic Cascade Reaction. Green Chem. 2019, 21, 6335-6341, 10.1039/c9gc03013a
Kricheldorf, H. R. Cyclic Polymers: Synthetic Strategies and Physical Properties. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 251-284, 10.1002/pola.23755
Josse, T.; De Winter, J.; Gerbaux, P.; Coulembier, O. Cyclic Polymers by Ring-Closure Strategies Angewandte. Angew. Chem., Int. Ed. 2016, 55, 13944-13958, 10.1002/anie.201601677
Nielsen, A. T.; Carpenter, W. R. 1,4-Cyclohexanedione. Org. Synth. 1965, 45, 25, 10.15227/orgsyn.045.0025
Nikbin, N.; Caratzoulas, S.; Vlachos, D. G. On the Brønsted Acid-Catalyzed Homogeneous Hydrolysis of Furans. ChemSusChem 2013, 6, 2066-2068, 10.1002/cssc.201300432
Li, Y.; Lv, G.; Wang, Y.; Deng, T.; Wang, Y.; Hou, X.; Yang, Y. Synthesis of 2,5-Hexanedione from Biomass Resources Using a Highly Efficient Biphasic System. ChemistrySelect 2016, 1, 1252-1255, 10.1002/slct.201600280
Hosseini, A.; Seidel, D.; Miska, A.; Schreiner, P. R. Fluoride-Assisted Activation of Calcium Carbide: A Simple Method for the Ethynylation of Aldehydes and Ketones. Org. Lett. 2015, 17, 2808-2811, 10.1021/acs.orglett.5b01219
Sum, Y. N.; Yu, D.; Zhang, Y. Synthesis of Acetylenic Alcohols with Calcium Carbide as the Acetylene Source. Green Chem. 2013, 15, 2718-2721, 10.1039/c3gc41269e