[en] Partly or fully renewable (co)polymers are gaining interest in both academia and industry. Polyethylene is a widely used polymer, classically derived from fossil fuels, with a high versatility stemming from the introduction of comonomers altering the mechanical properties. The introduction of renewable functionalities into this polymer is highly attractive to obtain functional, tunable, and at least partially renewable polyethylenes. We herein report the introduction of biosourced cyclic carbonates into polyethylene using organometallic-mediated radical polymerization under mild conditions. Molecular weights of up to 14 600 g mol−1 with dispersities as low as 1.19 were obtained, and the cyclic carbonate content could be easily tuned by the ethylene pressure during the polymerization. As a proof of concept, the hydrolysis of the cyclic carbonates of a representative copolymer was explored, and it provided polyethylene-bearing vicinal diols, with a hydrolysis degree of 71%. Given the multitude of chemoselective modifications possible on cyclic carbonates as well as the fact that many allylic- and alkylidene-type cyclic carbonates are accessible from renewable resources, this work opens up an avenue for the design of functional and more sustainable polyethylenes.
Research Center/Unit :
Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit Center for Education and Research on Macromolecules (CERM)
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Scholten, Philip Benjamin Vincent ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium > Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Germany
Cartigny, Grégory ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Grignard, Bruno ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Debuigne, Antoine ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Cramail, Henri; University of Bordeaux, Laboratoire de Chimie des Polymères Organiques (LCPO), France
Meier, Michael A. R.; Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Germany
Detrembleur, Christophe ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Language :
English
Title :
Functional polyethylenes by organometallic-mediated radical polymerization of biobased carbonates
Publication date :
16 March 2021
Journal title :
ACS Macro Letters
eISSN :
2161-1653
Publisher :
American Chemical Society, United States - District of Columbia
Volume :
10
Issue :
3
Pages :
313-320
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
EC - European Commission EOS - The Excellence Of Science Program F.R.S.-FNRS - Fonds de la Recherche Scientifique FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen
Funding text :
We thank the European Commission in the framework of the ITN-Marie Curie Program “EJD-FunMat” (grant number 641640). C.D. thanks the “Fonds National pour la Recherche Scientifique” (F.R.S.-FNRS) and the Fonds Wetenschappelijk Onderzoek − Vlaanderen (FWO) for financial support in the frame of the Excellence of Science (EOS) project no.
O019618F (ID EOS: 30902231). C.D. is a Research Director and A.D. is a Senior Associate Researcher, both financed by the F.R.S.-FNRS. We also thank Rebecca Seim for her help with the elemental analysis.
Boffa, L. S.; Novak, B. M. Copolymerization of Polar Monomers with Olefins Using Transition-Metal Complexes. Chem. Rev. 2000, 100 (4), 1479-1493, 10.1021/cr990251u
Franssen, N. M. G.; Reek, J. N. H.; de Bruin, B. Synthesis of Functional ‘Polyolefins': State of the Art and Remaining Challenges. Chem. Soc. Rev. 2013, 42 (13), 5809-5832, 10.1039/c3cs60032g
Keyes, A.; Basbug Alhan, H. E.; Ordonez, E.; Ha, U.; Beezer, D. B.; Dau, H.; Liu, Y.-S.; Tsogtgerel, E.; Jones, G. R.; Harth, E. Olefins and Vinyl Polar Monomers: Bridging the Gap for Next Generation Materials. Angew. Chem., Int. Ed. 2019, 58 (36), 12370-12391, 10.1002/anie.201900650
Grignard, B.; Gennen, S.; Jérôme, C.; Kleij, A. W.; Detrembleur, C. Advances in the Use of CO2 as a Renewable Feedstock for the Synthesis of Polymers. Chem. Soc. Rev. 2019, 48 (16), 4466-4514, 10.1039/C9CS00047J
Yadav, N.; Seidi, F.; Crespy, D.; D'Elia, V. Polymers Based on Cyclic Carbonates as Trait d'Union Between Polymer Chemistry and Sustainable CO2 Utilization. ChemSusChem 2019, 12 (4), 724-754, 10.1002/cssc.201802770
Cai, A.; Guo, W.; Martínez-Rodríguez, L.; Kleij, A. W. Palladium-Catalyzed Regio-and Enantioselective Synthesis of Allylic Amines Featuring Tetrasubstituted Tertiary Carbons. J. Am. Chem. Soc. 2016, 138 (43), 14194-14197, 10.1021/jacs.6b08841
Sopeña, S.; Laserna, V.; Guo, W.; Martin, E.; Escudero-Adán, E. C.; Kleij, A. W. Regioselective Organocatalytic Formation of Carbamates from Substituted Cyclic Carbonates. Adv. Synth. Catal. 2016, 358 (14), 2172-2178, 10.1002/adsc.201600290
Scholten, P. B. V.; Demarteau, J.; Gennen, S.; De Winter, J.; Grignard, B.; Debuigne, A.; Meier, M. A. R.; Detrembleur, C. Merging CO2-Based Building Blocks with Cobalt-Mediated Radical Polymerization for the Synthesis of Functional Poly(Vinyl Alcohol)S. Macromolecules 2018, 51 (9), 3379-3393, 10.1021/acs.macromol.8b00492
Cornille, A.; Blain, M.; Auvergne, R.; Andrioletti, B.; Boutevin, B.; Caillol, S. A Study of Cyclic Carbonate Aminolysis at Room Temperature: Effect of Cyclic Carbonate Structures and Solvents on Polyhydroxyurethane Synthesis. Polym. Chem. 2017, 8 (3), 592-604, 10.1039/C6PY01854H
Blain, M.; Jean-Gérard, L.; Auvergne, R.; Benazet, D.; Caillol, S.; Andrioletti, B. Rational Investigations in the Ring Opening of Cyclic Carbonates by Amines. Green Chem. 2014, 16 (9), 4286-4291, 10.1039/C4GC01032A
Olsén, P.; Oschmann, M.; Johnston, E. V.; Åkermark, B. Synthesis of Highly Functional Carbamates through Ring-Opening of Cyclic Carbonates with Unprotected α-Amino Acids in Water. Green Chem. 2018, 20 (2), 469-475, 10.1039/C7GC02862H
Liu, D.; Thomas, T.; Gong, H.; Li, F.; Li, Q.; Song, L.; Azhagan, T.; Jiang, H.; Yang, M. A Mechanism of Alkali Metal Carbonates Catalysing the Synthesis of β-Hydroxyethyl Sulfide with Mercaptan and Ethylene Carbonate. Org. Biomol. Chem. 2019, 17 (42), 9367-9374, 10.1039/C9OB01816F
Alves, M.; Grignard, B.; Mereau, R.; Jerome, C.; Tassaing, T.; Detrembleur, C. Organocatalyzed Coupling of Carbon Dioxide with Epoxides for the Synthesis of Cyclic Carbonates: Catalyst Design and Mechanistic Studies. Catal. Sci. Technol. 2017, 7 (13), 2651-2684, 10.1039/C7CY00438A
Martín, C.; Fiorani, G.; Kleij, A. W. Recent Advances in the Catalytic Preparation of Cyclic Organic Carbonates. ACS Catal. 2015, 5 (2), 1353-1370, 10.1021/cs5018997
Fiorani, G.; Guo, W.; Kleij, A. W. Sustainable Conversion of Carbon Dioxide: The Advent of Organocatalysis. Green Chem. 2015, 17 (3), 1375-1389, 10.1039/C4GC01959H
Büttner, H.; Longwitz, L.; Steinbauer, J.; Wulf, C.; Werner, T. Recent Developments in the Synthesis of Cyclic Carbonates from Epoxides and CO2. Top. Curr. Chem. 2017, 375 (3), 50, 10.1007/s41061-017-0136-5
Shaikh, R. R.; Pornpraprom, S.; D'Elia, V. Catalytic Strategies for the Cycloaddition of Pure, Diluted, and Waste CO2 to Epoxides under Ambient Conditions. ACS Catal. 2018, 8 (1), 419-450, 10.1021/acscatal.7b03580
Dalpozzo, R.; Della Ca', N.; Gabriele, B.; Mancuso, R. Recent Advances in the Chemical Fixation of Carbon Dioxide: A Green Route to Carbonylated Heterocycle Synthesis. Catalysts 2019, 9 (6), 511, 10.3390/catal9060511
Dabral, S.; Schaub, T. The Use of Carbon Dioxide (CO2) as a Building Block in Organic Synthesis from an Industrial Perspective. Adv. Synth. Catal. 2019, 361 (2), 223-246, 10.1002/adsc.201801215
Peña Carrodeguas, L.; Cristòfol, À.; Fraile, J. M.; Mayoral, J. A.; Dorado, V.; Herrerías, C. I.; Kleij, A. W. Fatty Acid Based Biocarbonates: Al-Mediated Stereoselective Preparation of Mono-, Di-and Tricarbonates under Mild and Solvent-Less Conditions. Green Chem. 2017, 19 (15), 3535-3541, 10.1039/C7GC01206C
Tenhumberg, N.; Büttner, H.; Schäffner, B.; Kruse, D.; Blumenstein, M.; Werner, T. Cooperative Catalyst System for the Synthesis of Oleochemical Cyclic Carbonates from CO2and Renewables. Green Chem. 2016, 18 (13), 3775-3788, 10.1039/C6GC00671J
Cho, I.; Lee, T. Radical Polymerization of 4-Methylene-l,3-Dioxolan-2-One and Its Hydrolyzed Water-Soluble Polymer. Makromol. Chem., Rapid Commun. 1989, 10, 453-456, 10.1002/marc.1989.030100904
Ochiai, B.; Sano, Y.; Endo, T. Synthesis and Crosslinking of Oligo(Carbonate-Ketone) Obtained by Radical Polymerization of 4-Methylene-5,5-Dimethyl-1,3-Dioxolan-2-One. J. Netw. Polym. Japan 2005, 26 (3), 132-137, 10.11364/networkpolymer1996.26.132
Liu, B.; Zhang, Y.; Zhang, X.; Du, B.; Fan, Z. Fixation of Carbon Dioxide Concurrently or Tandem with Free Radical Polymerization for Highly Transparent Polyacrylates with Specific UV Absorption. Polym. Chem. 2016, 7 (22), 3731-3739, 10.1039/C6PY00525J
Tale, N. V.; Jagtap, R. N.; Tathe, D. S. An Efficient Approach for the Synthesis of Thermoset Polyurethane Acrylate Polymer and Its Film Properties. Des. Monomers Polym. 2014, 17 (2), 147-155, 10.1080/15685551.2013.840481
Jana, S.; Yu, H.; Parthiban, A.; Chai, C. L. L. Controlled Synthesis and Functionalization of PEGylated Methacrylates Bearing Cyclic Carbonate Pendant Groups. J. Polym. Sci., Part A: Polym. Chem. 2010, 48 (7), 1622-1632, 10.1002/pola.23928
Palaskar, D. V.; Sane, P. S.; Wadgaonkar, P. P. A New ATRP Initiator for Synthesis of Cyclic Carbonate-Terminated Poly(Methyl Methacrylate). React. Funct. Polym. 2010, 70 (12), 931-937, 10.1016/j.reactfunctpolym.2010.08.005
Scholten, P. B. V.; Detrembleur, C.; Meier, M. A. R. Plant-Based Non-Activated Olefins: A New Class of Renewable Monomers for Controlled Radical Polymerisation. ACS Sustainable Chem. Eng. 2019, 7 (2), 2751-2762, 10.1021/acssuschemeng.8b05926
Laible, R. C. Allyl Polymerizations. Chem. Rev. 1958, 58 (5), 807-843, 10.1021/cr50023a001
Bartlett, P. D.; Altschul, R. The Polymerization of Allyl Compounds. I. Factors Governing the Acyl Peroxide-Induced Polymerization of Allyl Acetate, and the Fate of the Peroxide. J. Am. Chem. Soc. 1945, 67 (5), 812-816, 10.1021/ja01221a036
Bartlett, P. D.; Altschul, R. The Polymerization of Allyl Compounds. II. Preliminary Kinetic Study of the Peroxide-Induced Polymerization of Allyl Acetate. J. Am. Chem. Soc. 1945, 67 (5), 816-822, 10.1021/ja01221a037
Bartlett, P. D.; Nozaki, K. The Polymerization of Allyl Compounds. III. The Peroxide-Induced Copolymerization of Allyl Acetate with Maleic Anhydride. J. Am. Chem. Soc. 1946, 68 (8), 1495-1504, 10.1021/ja01212a033
Bartlett, P. D.; Tate, F. A. The Polymerization of Allyl Compounds. VI. The Polymerization of Allyl-1-D2 Acetate and the Mechanism of Its Chain Termination. J. Am. Chem. Soc. 1953, 75 (1), 91-95, 10.1021/ja01097a026
Kermagoret, A.; Debuigne, A.; Jérôme, C.; Detrembleur, C. Precision Design of Ethylene-and Polar-Monomer-Based Copolymers by Organometallic-Mediated Radical Polymerization. Nat. Chem. 2014, 6 (3), 179-187, 10.1038/nchem.1850
Dommanget, C.; D'Agosto, F.; Monteil, V. Polymerization of Ethylene through Reversible Addition-Fragmentation Chain Transfer (RAFT). Angew. Chem., Int. Ed. 2014, 53 (26), 6683-6686, 10.1002/anie.201403491
Chen, Q. B.; Zeng, T. Y.; Xia, L.; Zhang, Z.; Hong, C. Y.; Zou, G.; You, Y. Z. A RAFT/MADIX Method Finely Regulating the Copolymerization of Ethylene and Polar Vinyl Monomers under Mild Conditions. Chem. Commun. 2017, 53 (78), 10780-10783, 10.1039/C7CC06341E
Demarteau, J.; Kermagoret, A.; Jérôme, C.; Detrembleur, C.; Debuigne, A. Controlled Synthesis of Ethylene-Vinyl Acetate Based Copolymers by Organometallic Mediated Radical Polymerization. ACS Symp. Ser. 2015, 1188, 47-61, 10.1021/bk-2015-1188.ch004
Zeng, T.; You, W.; Chen, G.; Nie, X.; Zhang, Z.; Xia, L.; Hong, C.; Chen, C.; You, Y. Degradable PE-Based Copolymer with Controlled Ester Structure Incorporation by Cobalt-Mediated Radical Copolymerization under Mild Condition. iScience 2020, 23 (3), 100904, 10.1016/j.isci.2020.100904
Wolpers, A.; Baffie, F.; Verrieux, L.; Perrin, L.; Monteil, V.; D'Agosto, F. Iodine-Transfer Polymerization (ITP) of Ethylene and Copolymerization with Vinyl Acetate. Angew. Chem., Int. Ed. 2020, 59 (43), 19304-19310, 10.1002/anie.202008872
Demarteau, J.; De Winter, J.; Detrembleur, C.; Debuigne, A. Ethylene/Vinyl Acetate-Based Macrocycles via Organometallic-Mediated Radical Polymerization and CuAAC "click" Reaction. Polym. Chem. 2018, 9 (3), 273-278, 10.1039/C7PY01891F
Boyaval, A.; Méreau, R.; Grignard, B.; Detrembleur, C.; Jerome, C.; Tassaing, T. Organocatalytic Coupling of CO2 with a Propargylic Alcohol: A Comprehensive Mechanistic Study. ChemSusChem 2017, 10 (6), 1241-1248, 10.1002/cssc.201601524
Debuigne, A.; Jérôme, C.; Detrembleur, C. Organometallic-Mediated Radical Polymerization of ‘Less Activated Monomers': Fundamentals, Challenges and Opportunities. Polymer 2017, 115, 285-307, 10.1016/j.polymer.2017.01.008
Roedel, J. M. The Molecular Structure of Polyethylene. I. Chain Branching in Polyethylene during Polymerization. J. Am. Chem. Soc. 1953, 75 (24), 6110-6112, 10.1021/ja01120a005
Matsumoto, A. Polymerization of Multiallyl Monomers. Prog. Polym. Sci. 2001, 26 (2), 189-257, 10.1016/S0079-6700(00)00039-3
Inoue, S.; Tamezawa, H.; Aota, H.; Matsumoto, A.; Yokoyama, K.; Matoba, Y.; Shibano, M. Addition-Fragmentation Chain Transfer in Allyl Polymerization at Elevated Temperatures. Macromolecules 2011, 44 (8), 3169-3173, 10.1021/ma1029423
Demarteau, J.; Scholten, P. B. V.; Kermagoret, A.; De Winter, J.; Meier, M. A. R.; Monteil, V.; Debuigne, A.; Detrembleur, C. Functional Polyethylene (PE) and PE-Based Block Copolymers by Organometallic-Mediated Radical Polymerization . Macromolecules 2019, 52 (22), 9053-9063, 10.1021/acs.macromol.9b01741
Grau, E.; Broyer, J. P.; Boisson, C.; Spitz, R.; Monteil, V. Unusual Activation by Solvent of the Ethylene Free Radical Polymerization. Polym. Chem. 2011, 2 (10), 2328-2333, 10.1039/c1py00200g
Dai, S.; Chen, C. Palladium-Catalyzed Direct Synthesis of Various Branched, Carboxylic Acid-Functionalized Polyolefins: Characterization, Derivatization, and Properties. Macromolecules 2018, 51 (17), 6818-6824, 10.1021/acs.macromol.8b01261
Dai, S.; Chen, C. Direct Synthesis of Functionalized High-Molecular-Weight Polyethylene by Copolymerization of Ethylene with Polar Monomers. Angew. Chem., Int. Ed. 2016, 55 (42), 13281-13285, 10.1002/anie.201607152
Zou, C.; Dai, S.; Chen, C. Ethylene Polymerization and Copolymerization Using Nickel 2-Iminopyridine-N-Oxide Catalysts: Modulation of Polymer Molecular Weights and Molecular-Weight Distributions. Macromolecules 2018, 51 (1), 49-56, 10.1021/acs.macromol.7b02156
Yasuda, H.; Nakano, R.; Ito, S.; Nozaki, K. Palladium/IzQO-Catalyzed Coordination-Insertion Copolymerization of Ethylene and 1,1-Disubstituted Ethylenes Bearing a Polar Functional Group. J. Am. Chem. Soc. 2018, 140 (5), 1876-1883, 10.1021/jacs.7b12593
Wang, X.; Nozaki, K. Selective Chain-End Functionalization of Polar Polyethylenes: Orthogonal Reactivity of Carbene and Polar Vinyl Monomers in Their Copolymerization with Ethylene. J. Am. Chem. Soc. 2018, 140 (46), 15635-15640, 10.1021/jacs.8b10335
Mitsushige, Y.; Yasuda, H.; Carrow, B. P.; Ito, S.; Kobayashi, M.; Tayano, T.; Watanabe, Y.; Okuno, Y.; Hayashi, S.; Kuroda, J.; Okumura, Y.; Nozaki, K. Methylene-Bridged Bisphosphine Monoxide Ligands for Palladium-Catalyzed Copolymerization of Ethylene and Polar Monomers. ACS Macro Lett. 2018, 7 (3), 305-311, 10.1021/acsmacrolett.8b00034
Na, Y.; Dai, S.; Chen, C. Direct Synthesis of Polar-Functionalized Linear Low-Density Polyethylene (LLDPE) and Low-Density Polyethylene (LDPE). Macromolecules 2018, 51, 4040-4048, 10.1021/acs.macromol.8b00467
Jung, J.; Yasuda, H.; Nozaki, K. Copolymerization of Nonpolar Olefins and Allyl Acetate Using Nickel Catalysts Bearing a Methylene-Bridged Bisphosphine Monoxide Ligand. Macromolecules 2020, 53 (7), 2547-2556, 10.1021/acs.macromol.0c00183
Debuigne, A.; Jérôme, C.; Detrembleur, C. Isoprene-Assisted Radical Coupling of (Co)Polymers Prepared by Cobalt-Mediated Radical Polymerization. Angew. Chem., Int. Ed. 2009, 48 (8), 1422-1424, 10.1002/anie.200804880
Debuigne, A.; Poli, R.; De Winter, J.; Laurent, P.; Gerbaux, P.; Dubois, P.; Wathelet, J. P.; Jérôme, C.; Detrembleur, C. Cobalt-Mediated Radical Coupling (CMRC): An Unusual Route to Midchain-Functionalized Symmetrical Macromolecules. Chem.-Eur. J. 2010, 16 (6), 1799-1811, 10.1002/chem.200902618
Debuigne, A.; Poli, R.; De Winter, J.; Laurent, P.; Gerbaux, P.; Wathelet, J. P.; Jérôme, C.; Detrembleur, C. Effective Cobalt-Mediated Radical Coupling (CMRC) of Polyvinyl Acetate and Poly(N-Vinylpyrrolidone) (Co)Polymer Precursors. Macromolecules 2010, 43 (6), 2801-2813, 10.1021/ma902610m
Debuigne, A.; Detrembleur, C.; Jérôme, C.; Junkers, T. Straightforward Synthesis of Symmetrical Multiblock Copolymers by Simultaneous Block Extension and Radical Coupling Reactions. Macromolecules 2013, 46 (22), 8922-8931, 10.1021/ma401918t
Kermagoret, A.; Chau, N. D. Q.; Grignard, B.; Cordella, D.; Debuigne, A.; Jérôme, C.; Detrembleur, C. Cobalt-Mediated Radical Polymerization of Vinyl Acetate and Acrylonitrile in Supercritical Carbon Dioxide. Macromol. Rapid Commun. 2016, 37 (6), 539-544, 10.1002/marc.201500629
Takeuchi, D.; Iwasawa, T.; Osakada, K. Double-Decker-Type Dipalladium Catalysts for Copolymerization of Ethylene with Acrylic Anhydride. Macromolecules 2018, 51 (14), 5048-5054, 10.1021/acs.macromol.8b00569
Jian, Z.; Mecking, S. Insertion Homo-and Copolymerization of Diallyl Ether. Angew. Chem., Int. Ed. 2015, 54 (52), 15845-15849, 10.1002/anie.201508930