Sympathetic Effect of Auricular Transcutaneous Vagus Nerve Stimulation on Healthy Subjects: A Crossover Controlled Clinical Trial Comparing Vagally Mediated and Active Control Stimulation Using Microneurography.
Gauthey, Anaïs; Morra, Sofia; van de Borne, Philippeet al.
[en] INTRODUCTION: Auricular low-level transcutaneous vagus nerve stimulation (aLL-tVNS) has emerged as a promising technology for cardiac arrhythmia management but is still experimental. In this physiological study, we hypothesized that aLL-tVNS modulated the autonomic nervous balance through a reduction of sympathetic tone and an increase in heart rate variability (HRV). We investigated the muscle sympathetic nerve activity (MSNA) recorded by microneurography during vagally mediated aLL-tVNS and active control on healthy volunteers. METHODS: In this crossover, double-blind controlled study, healthy men (N = 28; 27 ± 4 years old) were assigned to aLL-tVNS applied to cymba and lobe (active control) of the right ear. Each participant was randomly allocated to the three sequences (5 Hz, 20 Hz, and active control-5 Hz) during one session. MSNA signal was recorded at rest, during voluntarily apnea and aLL-tVNS. Sympathetic activity was expressed as: 1) number of bursts per minute (burst frequency, BF) and 2) MSNA activity calculated as BF x mean burst amplitude and expressed as changes from baseline (%). RR intervals, HRV parameters and sympathetic activity were analyzed during 5 min-baseline, 10 min-stimulation, and 10 min-recovery periods. Mixed regression models were performed to evaluate cymba-(5-20 Hz) effects on the parameters with stimulation. RESULTS: During apnea and compared to baseline, BF and MSNA activity increased (p = 0.002, p = 0.001, respectively). No stimulation effect on RR intervals and HRV parameters were showed excepted a slightly increase of the LF/HF ratio with stimulation in the cymba-5Hz sequence (coef. ± SE: 0.76 ± 0.32%; p = 0.02). During stimulation, reductions from baseline in BF (Coef. ± SE: -4.8 ± 1.1, p < 0.001) was observed but was not statistically different from that one in the active control. Reduction of MSNA activity was not significantly different between sequences. CONCLUSION: Acute right cymba aLL-tVNS did not induce any overall effects neither on heart rate, HRV nor MSNA variables on healthy subjects when compared to active control. Interestingly, these findings questioned the role of active controls in medical device clinical trials that implied subjective endpoints.
Disciplines :
Cardiovascular & respiratory systems
Author, co-author :
Gauthey, Anaïs
Morra, Sofia
van de Borne, Philippe
Dériaz, Denis ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie générales, humaines et path.
MAES, Nathalie ; Centre Hospitalier Universitaire de Liège - CHU > Département de gestion des systèmes d'informations (GSI) > Secteur d'appui à la recherche clinique et biostatistique
le Polain de Waroux, Jean-Benoît
Language :
English
Title :
Sympathetic Effect of Auricular Transcutaneous Vagus Nerve Stimulation on Healthy Subjects: A Crossover Controlled Clinical Trial Comparing Vagally Mediated and Active Control Stimulation Using Microneurography.
Agarwal S. K., Norby F. L., Whitsel E. A., (2017). Cardiac autonomic dysfunction and incidence of atrial fibrillation: results from 20 years follow-up. J. Am. Coll. Cardiol. 69 291–299.
Antonino D., Teixeira A. L., Maia-Lopes P. M., (2017). Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: a randomized placebo-controlled trial. Brain Stimul. 10 875–881. 10.1016/j.brs.2017.05.006 28566194
Badran B. W., Dowdle L. T., Mithoefer O. J., LaBate N. T., Coatsworth J., Brown J. C., et al. (2018a). Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review. Brain Stimul. 11 492–500. 10.1016/j.brs.2017.12.009 29361441
Badran B. W., Mithoefer O. J., Summer C. E., (2018b). Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimul. 11 699–708. 10.1016/j.brs.2018.04.004 29716843
Bauer S., Baier H., Baumgartner C., (2016). Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02). Brain Stimul. 9 356–363. 10.1016/j.brs.2015.11.003 27033012
Berkoff D. J., Cairns C. B., Sanchez L. D., Moorman C. T., III (2007). Heart rate variability in elite American track-and-field athletes. J. Strength Cond. Res. 21 227–231. 10.1519/00124278-200702000-00041 17313294
Bettoni M., Zimmermann M., (2002). Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation 105 2753–2759. 10.1161/01.cir.0000018443.44005.d8
Billman G. E., (2013). The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 4:26. 10.3389/fphys.2013.00026 23431279
Borges U., Laborde S., Raab M., (2019). Influence of transcutaneous vagus nerve stimulation on cardiac vagal activity: not different from sham stimulation and no effect of stimulation intensity. PLoS One 14:e0223848. 10.1371/journal.pone.0223848 31603939
Butt M. F., Albusoda A., Farmer A. D., Aziz Q., (2019). The anatomical basis for transcutaneous auricular vagus nerve stimulation. J. Anat. 236 588–611. 10.1111/joa.13122 31742681
Chen P. S., Chen L. S., Fishbein M. C., Lin S. F., Nattel S., (2014). Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ. Res. 114 1500–1515. 10.1161/circresaha.114.303772 24763467
Clancy J. A., Mary D. A., Witte K. K., Greenwood J. P., Deuchars S. A., Deuchars J., (2014). Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 7 871–877. 10.1016/j.brs.2014.07.031 25164906
David R., (2011). Primer on the Autonomic Nervous System. Cambridge, MA: Academic Press, 730.
De Couck M., Cserjesi R., Caers R., (2017). Effects of short and prolonged transcutaneous vagus nerve stimulation on heart rate variability in healthy subjects. Auton. Neurosci. 203 88–96. 10.1016/j.autneu.2016.11.003 28017263
Delius W., Hagbarth K. E., Hongell A., Wallin B. G., (1972). General characteristics of sympathetic activity in human muscle nerves. Acta Physiol. Scand. 84 65–81. 10.1111/j.1748-1716.1972.tb05157.x 5029386
Enck P., Klosterhalfen S., Zipfel S., (2011). Novel study designs to investigate the placebo response. BMC Med. Res. Methodol. 11:90. 10.1186/1471-2288-11-90 21663609
Frangos E., Ellrich J., Komisaruk B. R., (2015). Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul. 8 624–636. 10.1016/j.brs.2014.11.018 25573069
Gooden B. A., (1994). Mechanism of the human diving response. Integr. Physiol. Behav. Sci. 29 6–16. 10.1007/bf02691277 8018553
Groves D. A., Brown V. J., (2005). Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci. Biobehav. Rev. 29 493–500. 10.1016/j.neubiorev.2005.01.004 15820552
Guyenet P. G., (2006). The sympathetic control of blood pressure. Nat. Rev. Neurosci. 7 335–346. 10.1038/nrn1902 16760914
Heart rate variability. (1996). Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task force of the European society of cardiology and the North American society of pacing and electrophysiology. Circulation 93 1043–1065. 10.1161/01.cir.93.5.1043
Iwase S., Hayano J., Orimo S., (2017). Clinical Assessment of the Autonomic Nervous System. Berlin: Springer.
Katritsis D. G., Pokushalov E., Romanov A., Giazitzoglou E., Siontis G. C. M., Po S. S., et al. (2013). Autonomic denervation added to pulmonary vein isolation for paroxysmal atrial fibrillation: a randomized clinical trial. J. Am. Coll. Cardiol. 62 2318–2325. 10.1016/j.jacc.2013.06.053 23973694
Kraus T., Hosl K., Kiess O., Schanze A., Kornhuber J., Forster C., (2007). BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation. J. Neural Transm. 114 1485–1493. 10.1007/s00702-007-0755-z 17564758
Kraus T., Kiess O., Hosl K., Terekhin P., Kornhuber J., Forster C., (2013). CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal - a pilot study. Brain Stimul. 6 798–804. 10.1016/j.brs.2013.01.011 23453934
Matsukawa T., Sugiyama Y., Watanabe T., Kobayashi F., Mano T., (1998). Gender difference in age-related changes in muscle sympathetic nerve activity in healthy subjects. Am. J. Physiol. 275 R1600–R1604.
Murray A. R., Atkinson L., Mahadi M. K., Deuchars S. A., Deuchars J., (2016). The strange case of the ear and the heart: the auricular vagus nerve and its influence on cardiac control. Auton. Neurosci. 199 48–53. 10.1016/j.autneu.2016.06.004 27388046
Najem B., Unger P., Preumont N., (2006). Sympathetic control after cardiac resynchronization therapy: responders versus nonresponders. Am. J. Physiol. Heart Circ. Physiol. 291 H2647–H2652.
Peuker E. T., Filler T. J., (2002). The nerve supply of the human auricle. Clin. Anat. 15 35–37. 10.1002/ca.1089 11835542
Redberg R. F., (2014). Sham controls in medical device trials. N. Engl. J. Med. 371 892–893. 10.1056/nejmp1406388 25184861
Safi S., Ellrich J., Neuhuber W., (2016). Myelinated axons in the auricular branch of the human vagus nerve. Anat. Rec. 299 1184–1191. 10.1002/ar.23391 27342906
Shaffer F., Ginsberg J. P., (2017). An overview of heart rate variability metrics and norms. Front. Public Health 5:258. 10.3389/fpubh.2017.00258 29034226
Stavrakis S., Humphrey M. B., Scherlag B. J., (2015a). Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J. Am. Coll. Cardiol. 65 867–875. 10.1016/j.jacc.2014.12.026 25744003
Stavrakis S., Nakagawa H., Po S. S., Scherlag B. J., Lazzara R., Jackman W. M., (2015b). The role of the autonomic ganglia in atrial fibrillation. JACC Clin. Electrophysiol. 1 1–13. 10.1016/j.jacep.2015.01.005 26301262
Stavrakis S., Po S., (2017). Ganglionated plexi ablation: physiology and clinical applications. Arrhythm. Electrophysiol. Rev. 6 186–190. 10.15420/aer2017.26.1 29326833
Stavrakis S., Stoner J. A., Humphrey M. B., (2020). TREAT AF (transcutaneous electrical vagus nerve stimulation to suppress atrial fibrillation): a randomized clinical trial. JACC Clin. Electrophysiol. 6 282–291. 10.1016/j.jacep.2019.11.008 32192678
Stephens M. M., Kelly P. M., (2000). Fourth toe flexion sign: a new clinical sign for identification of the superficial peroneal nerve. Foot Ankle Int. 21 860–863. 10.1177/107110070002101012 11128019
Sutherland E. R., (2007). Sham procedure versus usual care as the control in clinical trials of devices: which is better? Proc. Am. Thorac. Soc. 4 574–576. 10.1513/pats.200707-090jk 17878472
Vallbo A. B., (2018). Microneurography: how it started and how it works. J. Neurophysiol. 120 1415–1427. 10.1152/jn.00933.2017 29924706
Vallbo A. B., Hagbarth K. E., Torebjörk H. E., Wallin B. G., (1979). Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol. Rev. 59 919–957. 10.1152/physrev.1979.59.4.919 227005
Vallbo A. B., Hagbarth K. E., Wallin B. G., (2004). Microneurography: how the technique developed and its role in the investigation of the sympathetic nervous system. J. Appl. Physiol. 96 1262–1269. 10.1152/japplphysiol.00470.2003 15016790
White D. W., Shoemaker J. K., Raven P. B., (2015). Methods and considerations for the analysis and standardization of assessing muscle sympathetic nerve activity in humans. Auton. Neurosci. 193 12–21. 10.1016/j.autneu.2015.08.004 26299824
Yakunina N., Kim S. S., Nam E. C., (2017). Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation 20 290–300. 10.1111/ner.12541 27898202
Yu L., Scherlag B. J., Li S., Fan Y., Dyer J., Male S., et al. (2013). Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve: a noninvasive approach to treat the initial phase of atrial fibrillation. Heart Rhythm 10 428–435. 10.1016/j.hrthm.2012.11.019 23183191
Zhu C., Hanna P., Rajendran P. S., Shivkumar K., (2019). Neuromodulation for ventricular tachycardia and atrial fibrillation: a clinical scenario-based review. JACC Clin. Electrophysiol. 5 881–896. 10.1016/j.jacep.2019.06.009 31439288